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DISCLAIMER 

 

The statements and conclusions in this report are those of the contractor and not 

necessarily those of the National Park Service. The mention of commercial products, 

their source, or their use in connection with material reported herein is not to be 

construed as actual or implied endorsement of such products.
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EXECUTIVE SUMMARY  

 

The University of Denver conducted a twelve day, winter, emissions measurement 

program in Yellowstone National Park that involved the collection of emissions data 

from in-use snowcoaches and snowmobiles between February 7 and February 18, 2005.  

In all more than 34 hours and 500 miles of mass emissions data were collected from nine 

snowcoaches and more than 960 snowmobile measurements were made. This report and 

all of the data sets collected are available for download from www.feat.biochem.du.edu. 

 
 

• Both snowcoaches and 4-stroke snowmobiles have lower emissions per person 

than the 2-stroke snowmobiles. 4-stroke snowmobile emissions reductions 

averaged 61% for CO and greater than 96% for hydrocarbons compared to 2-

strokes. 

 

• 4-stroke snowmobiles have lower emissions per person than the measured mix of 

snowcoaches for CO. However, newer coaches with modern pollution controls 

have lower per person emissions than the current 4-stroke snowmobiles. 

 

• The reduction in 4-stroke snowmobile hydrocarbons was significant (<96%) and 

readily observed. Visible exhaust plumes and odor were greatly reduced. The 

greater engine efficiency is reflected in an improved gas mileage by the 4-stroke 

snowmobiles. 

 

• Among 4-stroke snowmobiles, the average CO emissions varied by a factor of 3 

between manufacturers. The ratio of CO/NO emissions varied greatly based on 

the engine tuning by the manufacturer. 

 

• The Arctic Cat and Polaris 4-stroke snowmobiles emitted roughly half as much 

CO and HC as the Ski Doo snowmobiles. No statistically significant difference in 

emissions was observed by model year. 

 

• Higher CO and HC emissions were observed from the guide snowmobiles that 

had been turned off and restarted at the entrance gate. 

 

• Snowmobile emissions were NOT observed to increase with speed on a gm/mile 

basis. Emissions are greatest during initial startup and idling, especially when the 

engine is cold. 

 

• The mean snowmobile emissions measured in the gate area appear to provide a 

representative average emissions value for overall park snowmobile operations. 

 

• The conversion vans operate often in off-cycle engine mode when much greater 

pollutants are emitted. The time weighted off-cycle operations for all the coaches 

averaged 20% of the time for the inbound trips and 29% for outbound. This is 

primarily caused by the high load on the engine and underpowered coaches that 
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causes the transmission to shift up and down. Newer vans with larger engines 

were found to have lower emissions. 

 

• The Bombardier snowcoach with an uncontrolled carbureted engine had the 

highest CO and HC emissions and operated in this high region 98% of the time. 

Extremely high CO emissions were also observed at the west entrance from 

several additional vintage Bombardiers. Vans and coaches with efficient fuel-

injected engines and catalytic converters can be nearly as clean as modern 

wheeled passenger vehicles. 

 

 

Observations 

 

! The snowcoach fleet needs to be modernized to reduce unnecessary CO and HC 

emissions. The Bombardiers should be replaced completely with either new 

emission controlled engines or with more efficient conversion vans. 

 

! Current conversion vans are often operated outside the performance regions 

expected by the on-board engine control computer and in the process emitting 

more pollutants than necessary. The newer vans with the largest possible engines 

should be encouraged.   

 

! Newer 4-stroke engine snowmobiles are lower polluting than the previous 2-

stroke snowmobiles. Although the hydrocarbons have been reduced a lot, the 

amount of CO emissions still far exceeds what a late-model sedan or light duty 

truck emits.  Even cleaner snowmobiles could be a target for the future.  

 

! To further lower emissions and employee exposures at the entrance stations 

reduce the wait times as much as possible. 

 

Summary comparison of snow vehicle emissions (grams/mile/person). 

Snowmobiles
 

Snowcoaches
 

Pollutant Mean 1999 

2-Stroke
 

Mean 

4-Stroke
 

Lowest 

4-Stroke 

 Highest 

4-Stroke 
Mean

 Lowest 

Delacy 

Highest 

B709  
CO 71 28 25 60 35 0.6 74 

HC 92 3.4 3.1 4.7 1.2 0.1 5.9 

NOx --- 3.4 3.3 0.3 2.8 0.2 0.9 
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INTRODUCTION 

 

Large growth in wintertime snowmobile visits to Yellowstone National Park in the 

1990�s led to a series of lawsuits and environmental impact statements resulting in the 

adoption of a Temporary Winter Use Plans Environmental Assessment (EA).
1-4

 The 

temporary winter use plan will be in effect for three winter seasons beginning in 

December of 2004. It allows motorized winter visits on snowcoaches and a limited 

number (up to 720/day in Yellowstone and an additional 140/day in Grand Teton) of 

guided snowmobiles which meet a Best Available Technology (BAT) standard.
5
 

Additionally the EA allows the National Park Service (NPS) the opportunity to collect 

additional data on the BAT approved snowmobiles and snowcoaches in use in the park. 

In-use snowmobile and snowcoach emission measurements are scarce. Snowmobile 

emissions have been measured by the University of Denver in Yellowstone National Park 

in two previous studies in 1998 and 1999.
6, 7

 Both studies utilized the University of 

Denver�s on-road remote vehicle exhaust sensor to measure the tailpipe emissions of 

snowmobiles entering the parks west entrance. Several researchers have reported in-use 

and dynamometer emission measurements on 2-stroke and 4-stroke snowmobiles.
8-11 

In 

addition there is one report of dynamometer emission measurements of a vehicle used in 

the winter as a snowcoach under a simulated load by Southwest Research, Inc.
12

 

The two goals of this research were to repeat the gate measurements on the current crop 

of 4-stroke snowmobiles and to collect as much in-use emission data from snowcoaches 

as possible during the time frame. The snowmobile measurements would be used to 

directly compare and contrast with the previous data sets. The snowcoach measurements 

are primarily aimed in assisting with the air quality dispersion modeling. This modeling 

has been an integral part of the previous air quality studies in the park and have had to 

rely on limited emissions data.
13

 Typically this type of modeling likes to have g/mi or 

g/sec emissions data for several vehicle-operating modes (at a minimum idle, low and 

high speed cruise) and time estimates for the frequency of each. The goal to instrument as 

many different coaches as possible is not to establish an average snowcoach emission 

factor but to help establish the emission and activity boundaries that coaches operate in.  
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SNOWMOBILES 

 

Two previous snowmobile emission studies in 1998 and 1999 measured carbon 

monoxide (CO), unburned hydrocarbons (HC), carbon dioxide (CO2) and a limited 

number of toluene measurements were made in the 1999 study.
6, 7

 These measurements 

were collected on 2-stroke snowmobiles. These engines have been the preferred power 

plant by the industry due to their high power to weight ratio and fewer moving parts 

which lowers manufacturing costs. The absence of a valve train however, leads to large 

scavenging loses (the exhaust and intake port are open simultaneously allowing incoming 

fuel to enter the exhaust stream) contributing to excess HC emissions and poorer fuel 

economy.
14

 

Since our previous studies were conducted, the Environmental Protection Agency has 

published new emissions limits for the snowmobile industry.
15

 These emission limits are 

modest and will not end the use of 2-stroke engines. However, these limits along with the 

publicity surrounding snowmobile use in Yellowstone National Park, has prompted the 

industry to introduce 4-stroke engines in production snowmobiles. This fact alone should 

lower noise levels and dramatically reduce HC and CO emissions while improving fuel 

economy. For a description of the 4-stroke engine and causes of pollutants in the exhaust, 

see Heywood.
16

  

Beginning with the winter season of 2003-2004 Yellowstone Park began restricting 

entries to professionally guided groups of ten or less on BAT approved snowmobiles. 

These snowmobiles are modern fuel injected 4-stroke powered touring snowmobiles with 

no exhaust after treatment manufactured by Arctic Cat, Polaris and Bombardier (Ski 

Doo).
5
 The entrance to the park from West Yellowstone, MT (west entrance, elev. 

2020m) has the highest number of snowmobile entries and was the entrance used in the 

two previous studies to remotely measure the tailpipe emissions of the snowmobiles 

entering the park. 

The remote sensor used in this study was developed at the University of Denver for 

measuring the pollutants in motor vehicle exhaust and has previously been described in 

the literature.
17, 18

 The instrument consists of a non-dispersive infrared (NDIR) 

component for detecting CO, CO2, and HC, and a dispersive ultraviolet (UV) 

spectrometer for measuring NO. The source and detector units are positioned on opposite 

sides of the road in a bi-static arrangement. Colinear beams of IR and UV light are passed 

across the roadway into the IR detection unit, and are then focused onto a dichroic beam 

splitter, which separates the beams into their IR and UV components. The IR light is then 

passed onto a spinning polygon mirror, which spreads the light across the four infrared 

detectors: CO, CO2, HC and reference.
 

The UV light is reflected off the surface of the beam splitter and is focused into the end 

of a quartz fiber-optic cable, which transmits the light to a UV spectrometer. The UV unit 



 

 3   

is then capable of quantifying NO by measuring an absorbance band at 226.5 nm in the 

UV spectrum and comparing it to a calibration spectrum in the same region. 

The exhaust plume path length and density of the observed plume are highly variable 

from vehicle to vehicle, and are dependent upon, among other things, the height of the 

vehicle�s exhaust pipe, wind, and turbulence behind the vehicle. For these reasons, the 

remote sensor directly measures only ratios of CO, HC or NO to CO2. The ratios of CO, 

HC, or NO to CO2, termed Q, Q� and Q�� respectively, are constant for a given exhaust 

plume, and on their own are useful parameters for describing a hydrocarbon combustion 

system. This study reports measured emissions as %CO, %HC and %NO in the exhaust 

gas, corrected for water and excess oxygen not used in combustion. The %HC 

measurement is a factor of two smaller than an equivalent measurement by a flame 

ionization detector (FID).
19

 Thus, in order to calculate mass emissions as described 

below, the HC values reported will first be multiplied by 2.0 as shown below, assuming 

that the fuel used is regular gasoline with a density of 726 g/l, a carbon fraction of 86% 

and 3.79 l/gallon. The measured ratios can be directly converted into mass emissions by 

the equations shown below. 

gm CO/gallon = (28Q×0.86×726×3.79)/((1+Q+6Q�) ×12) 

gm HC/gallon = (2×44Q�×0.86×726×3.79)/((1+Q+6Q�) ×12) 

gm NO/gallon = (30Q� ×0.86×726×3.79)/((1+Q+6Q�) ×12) 

These equations indicate that the relationship between ratios of emissions to mass of 

emissions is substantially linear, especially for CO and NO and at low concentrations for 

HC. Thus, the percent difference in emissions calculated from the concentrations of 

pollutants reported here is equivalent to a difference calculated from the fuel-based mass 

emissions. 

Another useful conversion is from percent emissions to grams pollutant per kilogram 

(g/kg) of fuel. This conversion is achieved directly by first converting the pollutant ratio 

readings to moles of pollutant per mole of carbon in the exhaust using the following 

equation: 

moles pollutant =      pollutant     =          (pollutant/CO2)     =   (Q,2Q�,Q�) 

    moles C      CO + CO2 + 6HC     (CO/CO2) + 1 + 6(HC/CO2)       Q+1+6Q� 

 

Next, moles of pollutant are converted to grams by multiplying by molecular weight 

(e.g., 44 g/mole for HC since propane is measured), and the moles of carbon in the 

exhaust are converted to kilograms by multiplying (the denominator) by 0.014 kg of fuel 

per mole of carbon in fuel, assuming gasoline is stoichiometrically CH2. Again, the 

HC/CO2 ratio must use two times the reported HC (as above) because the equation 

depends upon carbon mass balance and the NDIR HC reading is about half a total carbon 

FID reading.
19 
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gm CO/kg = (28Q/(1 + Q + 6Q�))/0.014 

gm HC/kg = (2(44Q�)/(1 + Q + 6Q�))/0.014 

gm NO/kg = (30Q�/(1 + Q + 6Q�))/0.014 

Quality assurance calibrations are performed twice daily in the field unless observed 

voltage readings or meteorological changes are judged to warrant additional calibrations. 

A puff of gas containing certified amounts of CO, CO2, propane and NO is released into 

the instrument�s path, and the measured ratios from the instrument are then compared to 

those certified by the cylinder manufacturer (Scott Specialty Gases). These calibrations 

account for day-to-day variations in instrument sensitivity and variations in ambient CO2 

levels caused by local sources, atmospheric pressure and instrument path length. Since 

propane is used to calibrate the instrument, all hydrocarbon measurements reported by 

the remote sensor are as propane equivalents. 

Studies sponsored by the California Air Resources Board and General Motors Research 

Laboratories have shown that the remote sensor is capable of CO measurements that are 

correct to within ±5% of the values reported by an on-board gas analyzer, and within 

±15% for HC.
20, 21

 The NO channel used in this study has been extensively tested by the 

University of Denver, but we are still awaiting the opportunity to participate in an 

extensive double blind study and instrument intercomparison to have it independently 

validated. Tests involving a late-model low-emitting vehicle indicate a detection limit 

(3σ) of 25ppm for NO, with an error measurement of ±5% of the reading at higher 

concentrations. Appendix A gives a list of criteria for valid or invalid data. 

The remote sensor is accompanied by a video system to record a freeze-frame image of 

each vehicle measured. The emissions measurements, as well as a time and date stamp, 

are also recorded on the video image. The images are stored on videotape, so that vehicle 

make information may be incorporated into the emissions database during post-

processing. A device to measure the speed and acceleration of vehicles driving past the 

remote sensor was also used in this study. The system consists of a pair of infrared 

emitters and detectors (Banner Industries) which generates a pair of infrared beams 

passing across the road, six feet apart and approximately two feet above the surface. 

Vehicle speed is calculated from the time that passes between the front of the vehicle 

blocking the first and the second beams. To measure vehicle acceleration, a second speed 

is determined from the time that passes between the rear of the vehicle unblocking the 

first and the second beam. From these two speeds, and the time difference between the 

two speed measurements, acceleration is calculated, and reported in mph/s. Appendix B 

defines the database format used for the data set. 

Experimental 

 

Measurements were collected at the entrance from West Yellowstone, MT. to 

Yellowstone National Park (elev. 2020 m) on the mornings of Thursday Feb. 10 through 

Tuesday Feb. 15 and the morning of Thursday Feb. 17 between the hours of 7:00 and 
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12:00. Afternoon measurements were collected at the west exit Thursday Feb. 10 through 

Wednesday Feb. 16 between the hours of 13:30 and 17:00. Figures 1 and 2 are 

photographs of the entrance and exit setups. The videotapes were read for snowmobile 

engine type (4-stroke or 2-stroke), make, model year and to indicate snowcoaches. 

At the entrance, the FEAT source, detector and monochromator were placed on insulating 

pads on top of the snow approximately 6 m beyond the park service attendant booths. The 

emissions were measured during mild acceleration or cruise mode. The sampling beam 

was angled approximately 30 degrees to the path of travel to help insure complete beam 

blockage. A 1-second sample of exhaust was taken after each snowmobile using the 

standard FEAT software used for automobiles. A video camera photographed the front of 

each vehicle measured and the pictures were saved on videotape. The support equipment 

was housed inside an unused, heated attendant booth. The FEAT instrument was 

calibrated according to standard operating procedures using a certified gas cylinder with 

6% CO, 0.6% propane, 0.3% NO and 6% CO2 (Scott Specialty Gases). 

The successful monitoring of snowmobile emissions involves surmounting a number of 

physical challenges that are not encountered in measuring normal on-road vehicle 

emissions. The first is that the smaller displacement engines used have less exhaust 

 

Figure 1. Photograph of the remote sensor, speed sensors and camera setup at the west 

entrance to Yellowstone National Park. 
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volumes for sampling. Combined with the fact that Arctic Cat 4-stroke snowmobiles 

exhaust exits at the front allowing a longer time for it to dilute before a measurement can 

be made lowering signal strengths further. Over snow measurements also suffer from 

higher background noise levels caused by snow spray from the track and condensed 

exhaust water vapor on days with below zero (°F) temperatures. 

Generally snow from the track impacts a spray flap and so large clumps of snow do not 

generally interfere with the measurement, however above about 10 mph large clouds of 

very fine particles are kicked up which persist for many meters behind the snowmobile. 

This is the main reason why we have always attempted these measurements at the park 

entrances where speeds are lower. New this season was the use of a 3 meter long plastic 

mat, originally used for indoor skiing, at the exit to try to suppress the snow spray behind 

the faster moving snowmobiles (see Figure 2). The mat did stop new snow from being 

added to the cloud, but was too short (a mat 6 to 9 meters long is probably needed) to be 

effective at extinguishing the snow cloud carried along with the snowmobile.  

The HC emission measurement is the most difficult to make of the three species 

measured. Its signal to noise threshold is an order of magnitude lower than either CO or 

 

Figure 2. Photograph of a 2005 Arctic Cat snowmobile exiting Yellowstone National 

Park. The FEAT detector is in the upper right of the photo and opposite it is the IR/UV 

source. Underneath the first snowmobile is a plastic mat laid down in an attempt to 

eliminate excess snow spray.  
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NO. To successfully measure HC one needs to either increase the signal from the plume 

or lower the background noise levels. With the exception of 2-stroke snowmobiles, which 

have very large HC emission signals, we were unable to measure the HC emissions of the 

4-stroke snowmobiles at the exit location due to the combination of low signals and high 

noise from the snow clouds. 

The morning measurements at the entrance were only compromised on the coldest 

mornings. Below zero degrees Fahrenheit, the water in the exhaust quickly condenses 

making it difficult for the optical beam to penetrate through the fog. The liquid water fog 

also produces a large positive interference for the HC measurements.
17

 The water fog is 

more problematic for the 4-stroke snowmobiles because they combust the fuel more 

efficiently and, therefore produce more water in the exhaust. The mornings of February 

11, 15 and 17 have fewer measurements due to this. We did not even attempt 

measurements on the morning of February 16 because of the low temperatures.  

 

The only other interference occurs when attempting to measure NO on snowmobiles 

powered with 2-stroke engines. The NO measurements are carried out in the UV spectral 

region where raw gasoline also has a number of species with strong absorbance�s. The 

large amount of unburned fuel emitted by the 2-stroke engines interferes with the NO 

absorbance bands invalidating those measurements. It was for this reason that NO 

measurements were not attempted in the previous studies.
6, 7 

 

In addition to the remote sensing measurements, we attempted to install a portable 

emissions analyzer on a park service 2002 Arctic Cat 4-stroke. The engine parameters 

were acquired using the sensor array for engine rpm (optical pickup and reflective tape on 

the camshaft), intake air temperature (thermistor) and intake manifold pressure (pressure 

transducer teed into the manifold pressure sensor). Figure 3 shows a picture of the engine 

compartment with the thermistor and pressure transducer clearly visible. The wire leading 

to the optical pickup is also visible in the upper right corner of the picture. The sensor 

array control module was attached to the side of the engine cowling and the analyzer was 

attached with bungee cords to the rear passenger seat. The GPS receiver was taped onto 

the rear cargo cage.  

 

The exhaust on the Arctic Cat snowmobiles exits the engine underneath the very front of 

the engine cowling and on our first attempt we routed the exhaust hose underneath the 

engine cowling. Even at below freezing temperatures the heat under the cowling proved 

too much for our sampling line and it melted early in the drive. No data were obtained as 

a result of the sample line failure. This was eventually discovered and the lessons learned 

were applied the next afternoon when we routed the hose outside of the engine 

compartment and successfully collected some emissions data.  

 

Figure 4 shows a picture of the snowmobile in the final configuration with the analyzer 

covered with improvised insulation. Power connections provided a number of problems 

the second afternoon along with a difficulty keeping the analyzer benches warm. Despite 

the problems, we were able to successfully collect some idle emissions data and 2.3 miles 

of a driving segment along the west entrance road. The data file for the driving segment 
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does not correctly record the engine rpms, truncating them at a maximum of 5000 rpms 

(at 35 mph the snowmobile had engine rpms around 6500). Inspection of the data 

confirms that this is just a recording error and that the correct rpm was used to calculate 

the gram/sec exhaust flows. 

 

Results 

 

The resulting database contains 1,008 records (965 snowmobiles and 43 snowcoach 

measurements) with make and model year information and valid measurements for at 

least CO and CO2.. Most of these records also contain valid measurements for HC, NO, 

speed and acceleration except during the afternoon, which, because of sampling 

conditions, have mostly invalid HC measurements. Invalid measurement attempts arise 

when the vehicle plume is highly diluted, or the reported error in the ratio of the pollutant 

to CO2 exceeds a preset limit (see Appendix A). The database format is defined in 

Appendix B and the can be downloaded from www.feat.biochem.du.edu. 

 

Table 1 summarizes the measured CO/CO2, HC/CO2, NO/CO2 ratios and the calculated 

volumetric percents and grams of pollutant per gallon or per kg of fuel consumed, 

derived through the combustion equation for snowmobiles and snowcoaches.
17

 All of the 

 

Figure 3.  Arctic Cat engine showing the pressure transducer (A), thermistor (B), the 

top of the rpm optical pickup (C), the precision engineered rubber stopper and tee (D) 

for connecting the manifold pressure sensor (E) to the pressure transducer. 
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hydrocarbon emissions are reported in units of propane. All of the snowmobile NO 

emission measurements are report as NO. All errors are reported as the standard error of 

the mean (SEM). The average speeds and accelerations for 341 snowmobiles measured at 

the entrance were 9.6 ± 0.1 mph and 0.37 ± 0.18 mph/sec. For 8 snowcoaches the average 

speeds and accelerations were 6.4 ± 0.3 mph and 0.89 ± 0.2 mph/sec. At the exit, 215 

snowmobiles were measured at 15.5 ± 0.2 mph and 0.83 ± 0.15 mph/sec and 3 

snowcoaches at 9.4 ± 2 mph and 0.7 ± 0.2 mph/sec.  

 

Table 2 separates the snowmobile emission measurements by engine type. While 2-stroke 

snowmobiles are currently banned from the park for visitor entries, contractors and park 

employees are still allowed to use them. The calculations were performed utilizing the 

same assumptions described for Table 1. 

Table 3 breaks out the 4-stroke snowmobile emission measurements by manufacturer and 

Table 4 summarizes the emissions of 4-stroke snowmobiles by model year. Because of 

the small number of the 2002 and 2003 Arctic Cat snowmobiles, they have been 

combined into a single model year grouping. Table 5 summarizes the emissions data 

collected on the 2002 Arctic Cat snowmobile using the portable emissions analyzer. All 

of the standard errors of the mean for the measurements reported are at least an order of 

magnitude less than the last significant figure. The measured fuel economy for this 

Figure 4. Arctic Cat snowmobile with the portable emissions in the rear passenger seat. 
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Table 1. Summary of all 2005 Yellowstone National Park entrance and exit measurements.
a 

All Snowmobiles Snowcoaches Measurement 

Entrance Exit
b 

Entrance Exit
b 

Mean CO/CO2 

Mean %CO 

Mean g CO/gal
c 

Mean gCO/kg
c 

Samples 

0.17 ± 0.01 

2.20 ±  0.06 

680 ± 16 

250 ± 6 

603 

0.21 ± 0.01 

2.60 ± 0.08 

690 ± 21 

250 ± 8 

362 

0.19 ± 0.05 

2.10 ± 0.5 

675 ± 151 

250 ± 55 

32 

0.37 ± 0.19 

3.00 ± 1.4 

920 ± 431 

330 ± 160 

11 

Mean HC/CO2 

Mean %HC
d 

Mean gHC/gal
c 

Mean gHC/kg
c 

Samples 

0.013 ± 0.002 

0.15 ± 0.020 

110 ± 12 

41 ± 4 

489 

 0.001 ± 0.001 

0.006 ± 0.012 

4 ± 12 

1.5 ± 4.5 

25 

 

Mean NO/CO2 

Mean %NO 

Mean gNO/gal
c 

Mean gNO/kg
c 

Samples 

0.009 ± 0.001 

0.120 ± 0.004 

42 ± 1 

15 ± 0.5 

587 

0.017 ± 0.001 

0.220 ± 0.007 

68 ± 2 

25 ± 1 

352 

0.002 ± 0.001 

0.033 ± 0.008 

12 ± 3 

4.4 ± 1.1 

32 

0.001 ± 0.001 

0.013 ± 0.012 

4.8 ± 4.6 

1.7 ± 1.7 

11 
a
 All errors are reported as the standard error of the mean. 

b
 Exit HC measurements were invalid for all but the 2-strokes that are reported below. 

c
 g/gallon assumes a fuel density of 726 g/l and g/kg assumes a carbon fraction of 0.86. 

d
 All percent hydrocarbon emissions are reported in units of propane. 

Table 2. Summary of snowmobile emission measurements by engine type.
a 

4-Stroke Snowmobiles 2-Stroke Snowmobiles Measurement 

Entrance Exit
b 

Entrance
c 

Exit
c 

Mean CO/CO2 

Mean %CO 

Mean gCO/gal
d 

Mean gCO/kg
d 

Samples 

0.16 ± 0.01 

2.08 ±  0.05 

670 ± 16 

240 ± 6 

589 

0.19 ± 0.01 

2.43 ± 0.07 

670 ± 20 

240 ± 7 

362 

0.54 ± 0.07 

5.40 ± 0.5 

1000 ± 97 

370 ± 35 

14 

0.78 ± 0.1 

7.09 ± 0.6 

1500 ± 140 

550 ± 50 

9 

Mean HC/CO2 

Mean %HC
e 

Mean gHC/gal
d 

Mean gHC/kg
d 

Samples 

0.006 ± 0.001 

0.080 ± 0.08 

78 ± 7 

28 ± 2 

489 

 0.23 ± 0.02 

2.40 ± 0.26 

1300 ± 69 

480 ± 25 

14 

0.16 ± 0.01 

1.50 ± 0.08 

1000 ± 37 

370 ± 13 

9 

Mean NO/CO2 

Mean %NO 

Mean gNO/gal
d 

Mean gNO/kg
d 

Samples 

0.009 ± 0.001 

0.119 ± 0.004 

42 ± 1 

15 ± 0.5 

587 

0.017 ± 0.001 

0.223 ± 0.007 

68 ± 2 

25 ± 1 

359 

  

a
 All errors are reported as the standard error of the mean. 

b
 Exit HC measurements were invalid for all the 4-stroke engines due to snow spray. 

c
 NO measurements were invalid for all the 2-stroke engines due to fuel interference�s. 

d
 g/gallon assumes a fuel density of 726 g/l and g/kg assumes a carbon fraction of 0.86. 

e
 All percent hydrocarbon emissions are reported in units of propane. 
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Table 3. Summary of measurements by make for only 4-stroke powered snowmobiles.
a 

Entrance Exit
b 

Measurement 

Arctic Cat Polaris Ski Doo Arctic Cat Polaris Ski Doo 

Mean CO/CO2 

Mean %CO 

Mean gCO/gal
c 

Mean gCO/kg
c 

Samples 

0.13 ± 0.003 

1.70 ± 0.04 

550 ± 13 

200 ± 5 

447 

0.22 ± 0.02 

2.70 ± 0.16 

830 ± 44 

300 ± 16 

89 

0.39 ± 0.02 

4.50 ± 0.16 

1400 ± 49 

500 ± 18 

53 

0.16 ± 0.003 

2.10 ± 0.05 

580 ± 10 

210 ± 4 

272 

0.18 ± 0.04 

2.10 ± 0.3 

590 ± 76 

220 ± 28 

44 

0.46 ± 0.02 

5.10 ± 0.2 

1400 ± 66 

520 ± 24 

37 

Mean HC/CO2 

Mean %HC
d 

Mean gHC/gal
c 

Mean gHC/kg
c 

Samples 

0.005 ± 0.001 

0.071 ± 0.007 

72 ± 7 

26 ± 2 

367 

0.009 ± 0.003 

0.11 ± 0.03 

91 ± 25 

33 ± 9 

67 

0.01 ± 0.003 

0.12 ± 0.03 

110 ± 27 

39 ± 10 

41 

   

Mean NO/CO2 

Mean %NO 

Mean gNO/gal
c 

Mean gNO/kg
c 

Samples 

0.011 ± 0.0003 

0.150 ± 0.004 

51 ± 2 

19 ± 0.5 

446 

0.004 ± 0.0002 

0.049 ± 0.003 

17 ± 1 

6 ± 0.4 

88 

0.001 ± 0.0002 

0.013 ± 0.002 

4.3 ± 0.8 

1.6 ± 0.3 

53 

0.02 ± 0.0004 

0.270 ± 0.006 

82 ± 2 

30 ± 0.8 

272 

0.006 ± 0.0008 

0.083 ± 0.01 

28 ± 4 

10 ± 1.4 

44 

0.002 ± 0.0005 

0.024 ± 0.005 

7 ± 1.5 

2.6 ± 0.5 

36 
a
 All errors are reported as the standard error of the mean. 

b
 Exit HC measurements were invalid for all the 4-stroke engines due to snow spray. 

c
 g/gallon assumes a fuel density of 726 g/l and g/kg assumes a carbon fraction of 0.86. 

d
 All percent hydrocarbon emissions are reported in units of propane. 

Table 4. 4-Stroke snowmobile emissions by model year.
a 

Entrance Exit
b 

Make / Emissions 

Samples 2002/2003 2004 2005 2003 2004 2005 

Arctic Cat gCO/kg
c 

Samples 

Arctic Cat gHC/kg
c 

Samples 

Arctic Cat gNO/kg
c 

Samples 

170 ± 18   

13 

39 ± 9 

13 

22 ± 3.6 

13 

210 ± 6    

255 

26 ± 3 

207 

19 ± 0.8 

254 

190 ± 7 

179 

25 ± 4 

147 

18 ± 0.7 

179 

220 ± 44 

7 

 

 

20 ± 6.2 

7 

210 ± 5 

162 

 

 

32 ± 1 

162 

220 ± 6 

103 

 

 

28 ± 1.1 

103 

Polaris gCO/kg
c 

Samples 

Polaris gHC/kg
c 

Samples 

Polaris gNO/kg
c 

Samples 

180 ± 24 

4 

2 ± 7 

4 

4.5 ± 0.8 

4 

310 ± 19 

73 

33 ± 10 

54 

6.3 ± 0.5 

72 

280 ± 33 

12 

47 ± 23 

9 

4.9 ± 0.5 

12 

230 ± 137 

4 

 

 

1.6 ± 1 

4 

210 ± 31 

35 

 

 

11 ± 1.6 

35 

220 ± 60 

5 

 

 

9.4 ± 1.8 

5 

Ski Doo gCO/kg
c 

Samples 

Ski Doo gHC/kg
c 

Samples 

Ski Doo gNO/kg
c 

Samples 

480 ± 26 

30 

35 ± 14 

21 

1.6 ± 0.4 

30 

530 ± 21 

9 

12 ± 11 

9 

2.0 ± 0.8 

9 

530 ± 34 

14 

70 ± 23 

11 

1.3 ± 0.5 

14 

520 ± 32 

22 

 

 

3.1 ± 0.5 

21  

530 ± 46 

8 

 

 

2.0 ± 1.3 

8 

540 ± 64 

7 

 

 

1.6 ± 1.8 

7 
a
 All errors are reported as the standard error of the mean. 

b
 Exit HC measurements were invalid for all the 4-stroke engines due to snow spray. 

c
 g/kg assumes a carbon fraction of 0.86. 
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snowmobile during the driving portion was 21.9 mpg and its average speed as measured 

by the GPS was 28.2 ± 0.6 mph. The maximum speed was 42 mph. 

 

Discussion 

 

The reason for these new measurements was to compare the entrance emission 

measurements of the new 4-stroke snowmobiles to the data previously collected from 2-

strokes. There are very noticeable qualitative differences one can only observe in person 

at the west entrance. There are fewer snowmobiles, the 4-stroke snowmobiles are quieter 

and most notably the lack of smell of lube oil. The reduction of these emissions may also 

be important for reasons other than just smell since a number of compounds found in lube 

oil have been shown to be deposited and to persist on snow.
22 

Table 6 compares the 

emission measurements from 2-stroke snowmobiles measured at the west entrance with 

the two previous field studies. While the CO measurements have been shown to be 

temperature dependent, the small number of 2-stroke snowmobiles measured in 2005 

have entrance emissions which are very similar to those measured in the past. Directly 

comparing these emissions with those from Table 2 of the 4-stroke snowmobiles shows 

Table 5. Portable emission measurement results for a 2002 Arctic Cat 4-stroke snowmobile. 

Measurement Idle Driving 

Mean CO/CO2 

Mean gCO/gal
a 

Mean gCO/kg
a 

Mean gCO/sec 

Mean gCO/mile 

Duration 

Distance 

0.35 

1300 

470 

0.076 

NA 

8 min 19 sec 

0 miles 

0.075 

390 

140 

0.14 

17.0 

4 min 50 sec 

2.32 miles 

Mean HC/CO2 

Mean gHC/gal
a 

Mean gHC/kg
a 

Mean gHC/sec 

Mean gHC/mile 

Duration 

Distance 

0.006 

65 

24 

0.004 

NA 

8 min 19 sec 

0 miles 

0.003 

43 

16 

0.015 

1.9 

4 min 50 sec 

2.32 miles 

Mean NOx/CO2 

Mean NOx/gal
a 

Mean NOx/kg
a 

Mean NOx/sec 

Mean NOx/mile 

Duration 

Distance 

0.0005 

6.6 

2.4 

0.0002 

NA 

8 min 19 sec 

0 miles 

0.026 

220 

80 

0.078 

9.7 

4 min 50 sec 

2.32 miles 
a
 g/gal and g/kg results are calculated from the reported g/sec emissions and fuel 

consumption. 
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that measured entrance emissions are now factors of 3 and 38 lower for CO and HC. The 

mass emission rates per gallon or kilogram do not show as large a difference because 

they are a product of the emissions and fuel consumption rates. Since the 4-stroke 

snowmobiles will go almost twice as far on a gallon or kilogram of fuel as a 2-stroke 

snowmobile the 4-stroke snowmobiles mass per gallon emissions are further halved when 

comparing to the 2-strokes. Figure 5 shows a histogram comparing the 4-stroke 

snowmobiles measured at the west entrance to the 2-stroke snowmobiles previously 

measured at the same location in 1999.
7
 

The snowcoach emission measurements presented in Table 1 have larger standard errors 

of the mean due to the smaller number of samples and the bimodal distribution of the 

data. The snowcoaches using the west entrance are a mix of modern conversion vans, 

vintage Bombardiers and upgraded Bombardiers. The modern conversion vans and 

upgraded Bombardiers generally have low emission readings while the vintage 

Bombardiers do not. For example the exit snowcoach mean %CO emissions were 10% 

for 3 Bombardiers and 0.3% for the remaining 8 coaches. These high CO emissions are 

consistent with data presented later collected from an instrumented vintage Bombardier. 

The entrance data is not as skewed (0.8% versus 3.5%) probably because several of the 

identified Bombardiers have been upgraded to a modern emissions controlled engine. 

The snowmobile emissions data collected in 1999 are normally distributed.
7
 The 2005 

data however, tails away to higher emission levels more reminiscent of gamma 

distributed on-road vehicle emissions. In on-road fleets, this tail is caused by high 

emitting broken vehicles. We do not believe that this is the case with these snowmobile 

fleets. Part of the tail is because the three manufacturers have snowmobiles with differing 

fleet mean CO emissions as shown in Table 3. Figure 6 displays the 2005 gCO/kilogram 

data distributed by manufacturer. The Ski Doo snowmobiles account for most of the 

upper bars in the graph and are reasonably grouped for a small number (53) of 

measurements. The Polaris snowmobiles are only slightly shifted to higher emission 

Table 6. Comparison of 2-stroke emissions measurements made at the West Entrance.
a 

Measurement 1998
b 

1999
c 

2005 

Mean CO/CO2 

Mean gCO/gal 

Mean gCO/kg 

Samples 

0.53 ± 0.01 

870 ± 14 

320 ± 5 

888 

0.69 ± 0.01 

1100 ± 12 

380 ± 4 

1018 

0.54 ± 0.07 

1000 ± 97 

370 ± 35 

14 

Mean HC/CO2 

Mean gHC/gal 

Mean gHC/kg 

Samples 

0.26 ± 0.003 

1400 ± 8 

520 ± 3 

888 

0.27 ± 0.01 

1400 ± 8 

480 ± 3 

1018 

0.23 ± 0.02 

1300 ± 69 

480 ± 25 

14 
a
 All errors are reported as the standard error of the mean.

 

b
 Environ. Sci. & Technol. 1999, 33, 3924-3926. 

c
 Environ. Sci. & Technol. 2001, 35, 2874-2881. 
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Figure 6. Comparison of gCO/kilogram of fuel emissions measured at the west entrance to 

Yellowstone National Park for 4-stroke snowmobiles by manufacturer. There are 447 

Arctic Cat measurements, 89 Polaris measurements and 53 Ski Doo measurements. 

Figure 5. Comparison of gCO/kilogram of fuel emissions measured at the west entrance to 

Yellowstone National Park from 4-stroke snowmobiles in 2005 (588) with measurements 

made on 2-stroke snowmobiles in 1999 (1018). 
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levels when compared with the Arctic Cat snowmobiles. All but the Arctic Cat 

snowmobiles appear normally distributed.  

So what else could be accounting for the few Arctic Cat snowmobiles that appear to have 

much higher emissions than the majority if it is not a maintenance issue? Ideal 

measurements are made on a fully warmed up vehicle. Prior to the adoption of the EA the 

majority of visitors, entering the park on snowmobiles did so using a prepurchased pass 

through an express lane. The express lane allowed a rider with a clearly visible entry pass 

to enter the park without stopping at the entrance gate. This helped to limit the time that 

snowmobiles spent in the gate area and lower the emissions that park employees were 

exposed to each morning. With the advent of the EA and guided groups, the Park Service 

has returned to requiring all snowmobiles to stop and check in at the entrance gate. Most 

guides and a few of their clients turned their snowmobiles off while stopped at the gate in 

(usually only a few minutes) an effort to reduce employee emissions exposure.
23

 This 

results in some snowmobiles being measured very soon after starting which will often 

increase CO and HC emissions. 

Since the guide snowmobiles are the first in line for each group, their emissions should be 

the most susceptible to increased emissions from starting. To test this hypothesis we 

identified the guide snowmobiles in the video and marked them in the database. Table 7 

compares the entrance emissions between the guide and client snowmobiles by make. 

The CO and HC emissions for guide snowmobiles are higher for every make though 

many of the samples are too small for the differences to be statistically significant. It 

turns out that the high emitting Arctic Cat snowmobiles in the distribution in Figure 6 are 

guide snowmobiles and when they are removed the remaining Arctic Cat snowmobiles 

are normally distributed. This also highlights the fact that the entrance measurements will 

be slightly biased high when compared to a fully warmed up fleet measurement. 

Table 7. Entrance measurement comparison between guide and client snowmobiles.
a 

Make Guide/Client 
Mean gCO/kg 

Samples 

Mean gHC/kg 

Samples 

Mean gNO/kg 

Samples 

Arctic Cat Guide 
330 ± 22 

47 

28 ± 7 

39 

13 ± 1.5 

46 

Arctic Cat Client 
190 ± 4 

400 

26 ± 3 

328 

19 ± 0.6 

400 

Polaris Guide 
360 ± 56 

14 

53 ± 10 

13 

4.1 ± 0.5 

14 

Polaris Client 
290 ± 16 

75 

28 ± 11 

53 

6.4 ± 0.5 

74 

Ski Doo Guide 
530 ± 34 

14 

70 ± 23 

11 

1.3 ± 0.5 

14 

Ski Doo Client 
490 ± 21 

39 

28 ± 10 

30 

1.7 ± 0.4 

39 
a
 All errors are reported as the standard error of the mean. 
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Within each manufacturer there appears to be no correlation between emissions and 

model years. Table 4 shows that for Arctic Cat and Polaris the oldest models have 

slightly lower emissions, but these are very small samples and the differences seen for 

CO are not present during the exit measurements. It is very possible that the Arctic Cat 

snowmobiles lower CO emissions are a result of fewer cold start emissions since many of 

the 2002/2003 models were driven by NPS employees. Since the engine technology in 

the 4-stroke snowmobiles are essentially the same each year, the only emission 

differences one would expect to find from year to year would be linked to engine 

maintenance issues. The engine technology in use is largely borrowed from the 

automotive sector where many of the engine components have been designed for 100,000 

mile warranties. The 2002 and 2003 snowmobiles are not old enough yet for any 

maintenance issues to be much of a problem. 

There are emission differences by manufacturer (see Tables 3 and 4). The Ski Doo�s have 

statistically higher CO emissions (by a factor of 2 to 3) than either the Arctic Cat or 

Polaris snowmobiles for both the entrance and exit measurements. The Ski Doo HC 

emissions are also higher but the small sample size prevents it from being statistically 

significant. Differences between the Arctic Cat and Polaris snowmobiles for CO and HC 

may be a difference in the relative number of cold starts in the Polaris fleet as the 

afternoon measurements for CO show no statistical difference between the two. 

The Arctic Cat snowmobiles have the highest NO emissions in both the morning and the 

afternoon measurements. NO emissions from the Ski Doo�s are expected to be lower 

since as CO emissions increase, the NO emissions have to correspondingly decrease. This 

is because rich air to fuel ratios guarantee that there is not enough oxygen available in the 

combustion chamber to oxidize nitrogen to NO. 

To convert the mass emissions per gallon of fuel into grams per mile emission one just 

needs a fuel economy estimate. We obtained fuel sales records from the National Park 

Service for the winter of 2004-2005 that list gallons sold and odometer readings.
24

 Many 

of the records contain obvious errors that include more gallons sold than can possibly fit 

into a single tank and incorrect or omitted odometer readings. With these caveats the data 

produces an average fuel economy of 17 ± 3 mpg. The 2002 Arctic Cat snowmobile that 

we instrumented with the portable emissions analyzer was measured at 21.9 mpg during 

the high speed driving portion of our test. An industry representative felt that a 

conservative fuel economy range for Yellowstone driving conditions would be between 

16 and 20 mpg.
25

 Table 8 is compiled using the emissions measurements from Tables 2 

and 3 and assuming a 4-stroke fuel economy of 18 mpg and a 2-stroke fuel economy of 

13 mpg.
7  

With the use of the Clean Air Technologies portable emissions monitor (fully described 

in the next section) it was possible to collect some in-use data covering the entire park 

operating range of a 2002 Arctic Cat snowmobile.
26, 27

 Figure 7 displays second by 

second data collected during a 2.3 mile drive along the west entrance road. Because of 
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Table 8. Estimated snowmobile gram/mile emissions from grams/gallon measurements.  

4-Strokes
a 

2-Strokes
b 

Fleet Estimate 
Entrance Exit Entrance Exit 

All Mean gCO/mile 37 37 78 120 

All Mean gHC/mile 4.3 NA 100 78 

All Mean gNO/mile 2.3 3.8 NA NA 

Arctic Cat Mean gCO/mile 31 32   

Arctic Cat Mean gHC/mile 4 NA   

Arctic Cat Mean gNO/mile 2.8 4.6   

Polaris Mean gCO/mile 46 33   

Polaris Mean gHC/mile 5.1 NA   

Polaris Mean gNO/mile 1 1.6   

Ski Doo Mean gCO/mile 77 80   

Ski Doo Mean gHC/mile 6 NA   

Ski Doo Mean gNO/mile 0.24 0.39   
a
 Assumes a fuel economy of 18mpg. 

b
 Assumes a fuel economy of 13mpg. 
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Figure 7. Second by second emission data collected from a 2002 Arctic Cat 4-stroke 

snowmobile on a 2.3 mile drive along the west entrance road. The rpm data is a composite of 

measured and estimated values. The percent CO data are divided by 10 for display purposes. 
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the rpm recording problem described previously, the displayed rpm�s are a mix of the 

recorded values and those estimated from the GPS speed data. The recorded percent CO 

data has been divided by ten to facilitate displaying all of the emissions on the same 

graph. The drive consisted of a warm start and 85 seconds of idling followed by the 

snowmobile being accelerated up to cruising speed (35 to 40 mph) and then maintaining 

that speed until the data collection ended.  

The obvious emission differences are between idle and cruise with the snowmobile 

operating with a richer air to fuel mixture during the idle portion. This is most likely an 

operational decision by the manufacturer to help the engine start and idle better at the 

normally low operational temperatures that will be expected. During the cruise portion, 

the snowmobile has very consistent emission levels throughout all of the operating speeds 

as would be expected from a closed-loop computer-controlled engine. This is in contrast 

to data reported by Southwest Research showing a large speed dependence of CO 

emissions.
11

 Figure 8 shows a comparison between the measured grams/mile emissions as 

a function of speed and estimated gram per mile emissions that Southwest Research 

reported for a similar pre-production Arctic Cat snowmobile. The two data sets show 

similar downward trends with speed for NO and HC, however the dynamometer CO 

emissions increased rapidly with increasing speed. Our data did not show this behavior. 

This is an important observation because the previous emissions modeling included this 

large CO speed dependence in its emissions profiles.
13

 Possible explanations for the 

observed differences are that the intake air temperatures for our measurements are 

significantly lower than those used in the lab (13 °C versus 26 � 30 °C). The higher 

intake air temperature in the lab could cause the snowmobile to enrich the air/fuel 

mixture to keep the engine cooler during the test. This would result in the large increase 

in the CO emissions. Since Southwest�s testing was performed on a pre-production Arctic 

Cat snowmobile it is also possible that this behavior was fixed in the production model.
28

  

One last issue to discuss is how representative the FEAT measurements collected at the 

entrance and exit are for the snowmobile operations in the rest of the park. Most of the 

snowmobile fuel expended within the park is used at speeds of 25 to 40mph. This is 

higher than those observed in the gate area (10 to 15mph). The data collected from the 

2002 Arctic Cat with the portable emissions analyzer at higher speeds compares 

favorably with the Arctic Cat measurements collected at the entrance and exit. Table 9 

shows that the remote measurements collected at the gate area are spanned by the idle 

and cruise measurements collected from the instrumented 2002 Arctic Cat. The 

instrumented snowmobile cruise emissions should be viewed as a lower limit. When 

deceleration and idle operations are added in, the overall emissions number will increase. 

Those increases will result in an average number that is similar to the fleet measurements 

collected in the gate area by the remote sensor. 
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Figure 8. Measured CO, HC and NO grams/mile emissions as a function of speed from a 

2002 Arctic Cat 4-stroke snowmobile on a 2.3 mile drive along the west entrance road. The 

inset graph is reproduced from dynamometer data reported by Southwest Research on a pre-

production Arctic Cat 4-stroke snowmobile.
11

 

Table 9. In-use emissions comparison between the Arctic Cat fleet, excluding the tour guide 

snowmobiles, and the 2002 Arctic Cat instrumented with the portable emissions analyzer. 

2002 Arctic Cat Instrumented
a
 Arctic Cat In-use Fleet

b,c 

Measurement 
Idle Cruise Entrance Exit 

CO/CO2 0.35 0.08 0.11 0.16 

gCO/kg 470 140 190 210 

HC/CO2 0.006 0.003 0.005 NA 

gHC/kg 24 16 26 NA 

NOx/CO2 0.0005 0.026 0.011 0.02 

gNOx/kg 2.4 80 29 46 
a
 g/kg results are calculated from the reported g/sec emissions and fuel consumption. 

b
 g/kg calculations assumes a carbon fraction of 0.86. 

c
 Snowmobile NO emissions have been converted to NO2 emissions for comparison. 
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SNOWCOACHES 

 

Joseph-Armand Bombardier has the distinction of being a founding father of both the 

snowcoach and the Ski-Doo snowmobile.
29

 The historical snowcoaches best known now 

as Bombardiers, or Bombs for short, began serving Yellowstone National Park in the mid 

1950�s and were manufactured until 1981. A number of these coaches are still operated 

by the park�s concessionaire and private operators. They consist of a rear-mounted engine 

that drives a twin track from a forward mounted drive axle. Twin skis are used to steer 

and a metal cabin holds around 10 passengers. Today these are supplemented by an 

assortment of modern wheeled vehicles that have been converted to over-the-snow use by 

adapting various track/ski systems as wheel replacements.  

 

Modern vehicles sold in the United States are required by the Federal Government to 

meet stringent laboratory emissions standards. The improving national air quality is a 

strong testament to the fact that these standards have worked to make large reductions in 

vehicle emissions.
30, 31

 Many recent studies have demonstrated that not only do new 

vehicles have very low initial emissions, but they now maintain these low levels many 

years longer than previous models.
32

 However, there are circumstances under which 

vehicles can be operated outside of the laboratory parameters causing tailpipe emission 

levels to increase. Snowcoaches in use in Yellowstone National Park are potentially just 

those types of vehicles and operation modes. The coaches in use in the park experience 

extremes of temperature, load and fuel consumption that fall well outside of all of the 

original emission design goals and testing parameters. 

 

Assortments of vehicles have been converted to snowcoach use in the park by the park�s 

concessionaire Xanterra and a number of private concessionaires. Xanterra has one of the 

largest collections of coaches that are operated from Mammoth, WY and Old Faithful. 

The Mammoth coaches serve Old Faithful and Canyon on daily trips, while the coaches 

based at Old Faithful serve the south and west entrances. Private operators provide coach 

trips into the park from the east, south and west entrances with the west entrances having 

the largest number of entries. During the winter 2004-2005 season 2,021 coach trips were 

reported in the park transporting 17,218 passengers.
33

 This was a 27% increase in coach 

trips and a 38% increase in passengers from the 2003-2004 season. 

 

Experimental 

 

On-board emission measurements were made on nine snowcoaches from February 7�18, 

2005. One goal of this project was to try to measure as many different snowcoaches as 

possible during this eleven-day period. Measurements were made with a commercially 

available Clean Air Technologies International, Inc. Universal Montana portable on-

board emissions monitoring system (see Figure 9).
26

 The universal unit is capable of 

testing electronically controlled sparked ignition vehicles and compression ignition 

vehicles that utilize heavy-duty engine controls. The system measures, in real-time, the 

gaseous species using twinned analyzer benches. Each bench includes an NDIR analyzer 

to measure CO, CO2 and HC, measured and reported as propane. Electrochemical cells 

are used on each bench to measure oxygen (O2) and NO (see Appendix C for the 
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Montana�s accuracy, repeatability and noise specifications). Both benches measure the 

same exhaust sample and the resulting concentrations are averaged between the two 

analyzers except during zeroing. The benches alternate zero checks so that one analyzer 

is always on-line at all times. On compression ignition engines, the HC measurements are 

not considered accurate because, without a heated sample line, it is believed that only a 

fraction of the heavier hydrocarbons reach the sample cell in gaseous form.
26

 The HC 

data are therefore not reported for the diesel snowcoach. Particulate matter (PM) 

emissions are measured on compression ignition engines using a real-time laser light 

scattering monitor. The system contains both light and heavy-duty engine computer 

scanners, and a GPS receiver. The data are stored on a second by second basis to a 

compact flash memory card. The analyzer was calibrated with a certified gas cylinder 

containing 12.0 % CO2, 8.02 % CO, 3220 ppm propane, and 3010 ppm NO (Messer, 

Morrisville, PA). 

 

Tailpipe concentration data including CO2 directly measure mass emissions per gallon of 

fuel. To convert into mass emissions per mile, a measure of the vehicle exhaust flow is 

needed. The Montana system indirectly measures the exhaust flow by calculating the 

intake air mass flow and using mass balance equations to obtain the exhaust flow. On late 

 

Figure 9. Photograph of the Montana system ready for sampling in a coach. Pictured are 

the video screen at left, compact flash card top center, GPS receiver connector top right 

and the exhaust lines exiting the cabin through the side window. 
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model vehicles, the Montana�s engine scanners allow the intake air mass flow to be 

obtained from the engine intake mass airflow sensor via the engine control unit on-board 

diagnostic (OBD) port. On older vehicles this parameter is determined from engine 

design (displacement and compression ratio) and operating parameters collected through 

a set of three temporarily mounted sensors using a speed-density method.
27

 The three 

sensors collect engine rpm (inductive or optical pickup), engine intake air temperature 

(thermistor) and the absolute intake manifold pressure (pressure transducer). The use of 

the Montana system to record gram/mile emission factors for the gaseous species 

measured has been shown to correlate well with laboratory grade equipment.
26

 The laser 

light scattering particulate measurement has been successfully compared to both 

gravimetric filter methods and a real-time TEOM-1105 particulate monitor with good 

results.
26

  

 

The Montana system labels the second-by-second data as valid when engine data are 

available and the analyzer benches are reporting satisfactory operating parameters. 

However, we learned with use that the software does not require any exhaust gas to be 

present for it to report valid gram/sec emissions data. These episodes are easy noted by 

large oxygen concentration measurements and the absence of the other exhaust gases. 

Also flow restrictions caused by water freezing in either the intake or exhaust lines 

sometimes produced large positive or negative emissions values that were not marked as 

invalid by the software. These events were often noted by the operator in the field 

notebook.  

 

Therefore the database contains two fields (Org_validity and Valid_g_s) that addresses 

data validity (see Appendix D). Org_validity is the flag originally produced by the 

Montana system and signifies valid data by a �YES� when engine data are available and 

the analyzer benches are reporting satisfactory operating parameters. The additional field 

Valid_g_s has been added to denote the data that we have included in our analysis. 

Appendix E contains a listing by coach as to the sections of data that we have invalidated 

for this analysis and the reasons for this designation. All of the data will be available for 

download from www.feat.biochem.du.edu and using the Org_validity flag data can be 

selected using any criteria desired. 

 

Sampling in-use emissions means having to deal with the differences between vehicles, 

the in-use environments and routines that the vehicles experience on a daily basis. In our 

case that meant different engine types, track configurations, freezing temperatures with 

lots of snow and ice and daily schedules to be kept to transport paying customers. We 

sampled one diesel and eight gasoline powered snowcoaches with 3 different track 

configurations. Since gasoline powered engines have about 12% water vapor in their 

exhaust, major steps had to be taken to try and prevent (not always successfully) water 

from freezing in the lines. The coach�s schedule each day was to warm-up from 7 � 8 am, 

depart the park entrance around 8:30 am and arrive at the destination for lunch around 

noon. After an hour and a half break, the coaches are warmed upped and the return trip 

starts at 1:30 pm and arrive back at the entrance between 5 and 6 pm. We generally 

needed 2 to 3 hours of time with each coach to install and calibrate the analyzer. Of the 

nine coaches that were sampled, only two were garaged indoor�s overnight, the National 
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Park Service diesel van and the Alpen Guides Bombardier. All of the Xanterra coaches 

located at the north entrance were parked in a wooded area at the end of the plowed road. 

Typically, we would install and calibrate the analyzer on a coach the night before its use. 

The analyzer and sampling lines were then removed to store them at room temperature 

overnight and arrive early the next morning to reinstall and allow the analyzer to warm-

up along with the coach. A round trip ticket was purchased each day and an operator 

accompanied the analyzer during the trip. On the afternoon of February 11 and the 

morning of February 13, the analyzer was unattended and no data were collected.  

 

There were three basic types of vehicles and track arrangements sampled during this 

study. Figures 10 - 12 show the National Park Service diesel van outfitted with �Mat-

Trax� treads, a vintage Bombardier coach with elevated exhaust and an early 90�s van 

conversion with a �Snowbuster� twin track/ski combination. Table 10 provides a 

summary of each vehicle along with the testing schedule and the roundtrip route 

information. In all, three 2000 model year and newer Mat-trax equipped vans were 

sampled, two vintage Bombardiers (one a traditional carbureted engine, the second 

converted to a modern fuel injected emissions controlled engine) and four early 90�s 

Snowbuster van conversions. They included eight gasoline and one diesel engine. 

 

Installation of the analyzer required routing the gas sampling and exhaust lines in and out 

of the vehicle and installing the power, OBD or sensor array cables and the GPS receiver. 

The exhaust tail pipes of the coaches were typically located behind and above the track of 

the vehicle. Snow was constantly kicked up into this area and an L-shaped extension was 

fabricated to attach to the end of the tailpipe to distance the opening from the track and 

 

Figure 10. National Park Service 2000 Ford E350 Diesel snowcoach with Mat-trax 

conversion also showing the insulated exhaust sampling lines. 
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Figure 11. Vintage Bombardier 709 that utilizes a rear engine, forwards driven twin 

track and twin steering ski arrangement. This engine has an elevated exhaust system 

and the sample and data lines enter the cabin through a rear roof hatch. 

 

Figure 12. Xanterra 164 is a 1992 Chevrolet Van with a rear driven Snowbuster 

track/ski conversion. 
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protect the sampling probe. The probe and sample line was wrapped in oversized foam 

pipe insulation and routed the shortest distance possible through a window into the cabin. 

The extra space in the opened window was plugged with foam rubber. Once inside the 

cabin, a plastic tee was installed into the end of the foam insulation and the sample line 

was threaded straight through to the analyzer. Because of power limitations, we could not 

electrically heat the sampling line. We instead relied on a 12-volt rechargeable 

motorcycle battery powered fan to continuously draw warm air out of the cabin and pass 

it through the plastic tee into and down the oversized pipe insulation to warm the line. 

Fiberglass, aluminum insulating tape and/or Mylar coated bubble wrap were used at the 

probe-hose interface for extra insulation and protection. Figure 13 shows a rear view of a 

coach with the tailpipe extension, insulated sample line and the rear window sealed with 

the foam rubber. 

Table 10. Snowcoach sampling dates, vehicle information and route summary. 

Vehicle 

Date Sampled 

Year 

Make 

Type 

Vin 

Engine 

Fuel Type 

Track Type 

Entrance 

Load 

In / Out 

Destination 

Distance 

NPS 

2/7 � 2/8/05 

2000 

Ford 

E350 Van 

1FBSS31F3YHB26376 

DI 7.3L V-8 Turbo 

Diesel 

Mat-Trax 

North 
5 / 5 

Loop of 

Park 

145 miles 

Xanterra 163 

2/15/05 

1992 

Chevrolet 

Van 

2GAGG39K0N4165176 

TBI 5.7L V-8 

Gasoline 

Snowbuster 

North 
11 / ? 

RT  

Old Faithful 

103 miles 

Xanterra 164 

2/9/05 

1992 

Chevrolet 

Van 

2GAGG39K1N4142358 

TBI 5.7L V-8 

Gasoline 

Snowbuster 

North 
8 / ? 

RT  

Old Faithful 

103 miles 

Xanterra 165 

2/12/05 

1991 

Chevrolet 

Van 

2GJGG39K3M4515530 

TBI 5.7L V-8 

Gasoline 

Snowbuster 

North 
9 / 2 

RT 

Old Faithful 

103 miles 

Xanterra 166 

2/13/05 

1991 

Chevrolet 

Van 

2GJGG39K8M4513787 

TBI 5.7L V-8 

Gasoline 

Snowbuster 

North 
- / 5 

One Way 

Old Faithful 

52 miles 

Xanterra 416 

2/14/05 

2001 

Chevrolet 

Van 

1GAHG39R111132819 

CPI 5.7L V-8 

Gasoline 

Mat-Trax 

North 
10 / - 

One Way 

Old Faithful 

52 miles 

Xanterra 419 

2/11/05 

2001 

Chevrolet 

Van 

1GAHG39G811211760 

MFI 8.1L V-8 

Gasoline 

Mat-Trax 

North 
8 / - 

One Way 

Old Faithful 

52 miles 

Xanterra 709 

2/10/05 

2001 Engine 

Bombardier 

 

Carbureted 5.7L V-8 

Gasoline 

Twin Track 

North 
6 / 6 

RT  

Canyon 

70 miles 

Alpen Guides 

DeLacy 

2/18/05 

2002 Engine 

Bombardier 

ZGCEC19T021214428 

MFI 5.3L V-8 

Gasoline 

Twin Track 

West 
3 / 3 

RT 

Old Faithful 

63 miles 
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The Montana portable system was usually placed in the seat behind the driver. The 

exhaust lines, power and GPS receiver lines were routed out of the window next to the 

analyzer. Power was taken either from the 12V cigarette lighter outlet, or from a power 

cable run from the battery in the engine compartment. All of the externally mounted lines 

and wires were held in place by right angle brackets held to the vehicle by strong 

magnets. The magnet/bracket assemblies were coated with electrical tape to keep the 

lines in place without scratching the vehicle. For the modern vehicles the OBD data line 

was duct taped along the floor to the dash area and connected to the data port. In the 

Bombardiers, the lines were routed via a rear roof hatch. The Montana system also 

records location and altitude from an integrated GPS receiver. The GPS antenna was 

mounted to the roof of the vehicle by a permanent magnet.  

 

The integrated GPS receiver proved to be more valuable than originally envisioned. We 

were interested in knowing the location of the coaches during monitoring so we could 

factor terrain into the analysis if desired. What we had not thought through is the fact that 

the drive wheels used in the track systems change the speed/odometer calibration.  The 

integrated GPS receiver proved a more accurate measurement of speed and distance 

traveled. The only caveat when summing the GPS distances is recognizing that the GPS 

receiver we used had a stationary variation of approximately a half a meter. In calculating 

 

Figure 13. Rear view of a Snowbuster coach showing the tailpipe extension, insulated 

sample line and the temporary foam insulation installed to seal the rear window. 
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distance traveled, any change in location that is less than or equal to 0.5 meters was 

summed as 0 meters. 

 

In comparing the GPS data with the engine reported odometer data it was also learned 

that the Mat-Trax conversions slip, over reporting distance travel by 5 to 10%. This was 

found from comparing the distance traveled calculations on the NPS diesel van during a 

short drive on pavement. The over snow engine reported distances always ended up 5 to 

10% higher than the GPS summed distance, except for the trip over pavement that agreed 

to better than 1%. When this was investigated further by graphing engine reported speeds 

versus GPS measured speed the Mat-Trax equipped vehicles had larger engine reported 

speed variations at the higher speeds than the Snowbuster track system. This again 

indicated that the longer Snowbuster track does not slip during over the snow travel.  

 

Results 

 

Nine days of sampling in Yellowstone National Park resulted in the collection of 51.9 

hours of second-by-second data (186,845 records) with 34.6 hours of valid gram per 

second data for CO, HC, and NO and an additional 6.3 hours of valid PM data from the 

park services diesel powered coach. The entire valid gram per second data includes at 

least engine rpm, intake air temperature and absolute intake manifold pressure. 

Additionally recorded from some of the engines were speed, acceleration, percent 

throttle, torque, coolant temperature and fuel economy. The GPS receiver reported its fix 

status, number of satellites visible, time, longitude, latitude and altitude. The database 

format is defined in Appendix D and is available for download from 

www.feat.biochem.du.edu. 

 

Table 11 details the valid data collected for each of the nine coaches instrumented during 

this study. The snowcoach NO data is measured as NO but is reported by the Montana 

unit as NO2 (NOx) for all of the g/mi, g/gal and g/kg snowcoach emission values. These 

data include a significant amount of idling that arose from the analyzers need for a 

consistent power source. Absent our presence, the coaches extended idling is generally 

restricted to the early morning and after lunch warm-up periods. Appendix F has a map 

for each day that the nine coaches were sampled, plotting the location of valid gram per 

second data along Yellowstone National Park roadways. For the roundtrips (see Table 

10) some points will overlap and areas not sampled inbound may have been sampled on 

the return trip.  

 

The National Park Service diesel van was the only vehicle tested on more than one day 

and they are combined in a single entry in Table 11. The test on February 7
 
was a short 

roundtrip from the maintenance garage to the Mammoth Post Office and on February 8 

we traveled on the longest trip of a grand loop around the park. Three roundtrips turned 

into one way sampling trips. Our roundtrip seat was used to ferry an NPS researcher to 

Old Faithful for an overnight visit resulting in two coach segments where the analyzer 

package was unattended and did not collect data. On February 11 (Xanterra 419) data 

collection was only attempted on the inbound trip and on February 13 (Xanterra 166) 

only on the return trip to the North entrance. On Monday, February 14 in Xanterra 416 
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because of a coach breakdown, we were asked to give up our seat and the return trip was 

with the luggage coach and no data was collected. 

 

Other reasons for reduced sampling times in Table 11 can be attributed to either line 

freezing problems or equipment malfunctions (see Appendix E). Xanterra 709 had line-

freezing problems early in its trip and the data collected on the return trip were lost when 

the computer failed to save the emissions data to the flash card. Xanterra 419 had major 

line freezing problems that occurred shortly after departure and were never resolved. 

These problems continued the next day with Xanterra 165 when a cracked fitting was 

discovered and temporarily repaired. The entire line was replaced for the next day�s trip 

and we had fewer line problems with the remaining coaches.  

 

For the purposes of the dispersion emissions modeling Table 12 breaks out the 

measurement time, distance and average speed for three self-defined operation modes of 

idle, low speed and cruise. Note that some data are lost between Tables 11 and 12 due to 

the additional requirement in Table 12 that the GPS receiver must have a valid fix. Idle 

has been defined by restricting the GPS measured distances change between readings of 

less than or equal to 0.5 meter. The low speed driving mode was defined as the GPS 

measured speed being greater than idle and less than or equal to 15 mph. Cruise mode 

was selected for GPS measured speeds of greater than 15 mph. Table 13 is the companion 

table and gives the measured mass emission rates for the three modes defined in Table 

12.  

 

Discussion 

 

The goals of this research project seem on the surface to be very simple and 

straightforward. Instrument and measure the tailpipe emissions of an in-use snowcoach 

during normal operations. There are reasons though for why these data have never before 

Table 11. Summary of all the valid second by second data collected for each coach. 

Sampled Gram/mile Emissions 
Vehicle 

Hours Miles 

Mean Speed 

(mph) 

Fuel Use 

(mpg) CO HC
a
 NOx PM

a
 

NPS Van 6.3 107.0 17.0 3.0 7.2 NA 49 0.12 

Xanterra 163 6.0 83.6 14.1 2.9 600 7.2 26 NA 

Xanterra 164 5.9 78.0 13.2 3.1 460 5.8 19 NA 

Xanterra 165 4.0 69.6 17.5 5.0 310 5.5 16 NA 

Xanterra 166 3.6 42.8 11.9 2.9 600 34 25 NA 

Xanterra 416 2.9 32.9 11.4 2.5 84 0.93 26 NA 

Xanterra 419 0.6 6.0 10.5 3.5 9.3 1.4 16 NA 

Alpen Guides 3.5 60.9 17.5 6.8 5.3 0.97 1.4 NA 

Xanterra 709 1.8 22.7 12.2 3.6 630 50 7.7 NA 

Totals and 

Time-Weighted 

Means 

34.6 503.5 14.6 3.7 300 10 24 0.12 

a
 HC data are not considered valid for the diesel vehicle (NPS Van) and PM data were only 

collected from this vehicle. 
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been collected in this manner. The first is that there are not many snowcoaches used 

around the world and those that are used are generally in places where exhaust emissions 

are not considered important. The second and perhaps more important factor is the 

environmental conditions that necessitate the use of snowcoaches mean that collecting 

warm wet exhaust emissions will be much easier in a laboratory setting than an in-use 

one. However, the environmental conditions that these vehicles operate in are apparently 

an important parameter that is almost impossible to reproduce in a laboratory setting.  

 

The collection of almost 35 hours of valid emissions and engine data is a major 

accomplishment in spite of the difficulties. Keeping the collection and exhaust lines from 

freezing was a difficult task some days. One of the intake sampling lines was especially 

troublesome and after its replacement beginning on Sunday February 13
th

 we had far less 

trouble. The battery powered fan which forced cabin air down the outside of the intake 

line was very successful and any future work should add a second fan to blow air over the 

exit lines which had icing problems as well.   

 

The vehicles that we have measured can be segregated into three distinct 

engine/emissions control groupings. 1) The NPS diesel van with a direct injection 

Table 12.  Valid data distributed for three GPS defined driving modes. 

Hours Sampled 

(Miles Traveled) 
Vehicle 

Idle 
Low 

Speed 
Cruise 

Mean Low Speed 

0 < GPS Speed ! 15 

mph 

Mean Cruise Speed 

GPS Speed > 15 mph 

NPS Van 
1.9 

(0) 

0.8 

(7.1) 

3.6 

(99.9) 
8.2 27.9 

Xanterra 163 
1.8 

(0) 

1.2 

(9.3) 

3 

(74.3) 
7.7 25.1 

Xanterra 164 
2.0 

(0) 

1 

(8.0) 

2.9 

(70.0) 
8.2 24.5 

Xanterra 165 
0.8 

(0) 

0.7 

(5.7) 

2.5 

(63.9) 
8.1 25.8 

Xanterra 166 
1.4 

(0) 

0.3 

(2.5) 

1.5 

(40.3) 
8.6 26.5 

Xanterra 416 
1.2 

(0) 

0.4 

(3.9) 

1.2 

(29) 
9.2 23.3 

Xanterra 419 
0.3 

(0) 

0.01 

(0.1) 

0.2 

(5.9) 
7.1 27.0 

Alpen Guides 
0.5 

(0) 

0.9 

(7.7) 

2.1 

(53.2) 
8.4 25.8 

Xanterra 709 
0.7 

(0) 

0.2 

(2.8) 

0.6 

(17) 
8.2 27.6 

Totals and 

Weighted 

Means
 

10.6 

(0) 

5.5 

(47.1) 

17.6 

(453.5) 
8.2 25.9 
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turbocharged compression ignition engine and no aftertreatment, 2) Xanterra van 

conversions and the Alpen Guides Bombardier all with modern gasoline spark ignition 

closed-loop, computer controlled, fuel injected engines with 3-way catalytic converters 

and 3) Xanterra Bombardier with a carbureted gasoline engine with no aftertreatment. 

There are engine (Xanterra vans 164-166 are throttle body injected and vans 416 and 419 

are port injected) and transmission (vans 164-166 have had the original transmissions 

replaced with a heavy-duty version) differences in the second group, however the 

certification emission standards and certification tests are not very different. The park 

Table 13. Mass emissions data for the three driving modes defined in Table 12.
a
 

Idle
 

Low Speed
 

Cruise
 

Vehicle 

Measured 
Species 

mg/s g/gal
 

g/kg g/mi g/gal g/kg g/mi g/gal g/kg 

NPS Van CO 6.8 53 19 8.9 32 12 6.2 17 6.1 

NPS Van NOx 16 130 46 42 150 55 47 130 46 

NPS Van PM 0.07 0.6 0.2 0.1 0.4 0.1 0.1 0.3 0.1 

Xanterra 163 CO 17 110 40 88 230 84 660 2000 730 

Xanterra 163 HC 9.1 59 21 7.0 18 6.7 6.4 19 7.0 

Xanterra 163 NOx 2.6 17 6.0 38 100 36 24 72 22 

Xanterra 164 CO 29 170 61 64 140 53 490 1700 620 

Xanterra 164 HC 6.7 38 14 5.9 13 4.9 4.9 17 6.3 

Xanterra 164 NOx 0.9 5.0 1.8 27 62 23 17 60 22 

Xanterra 165 CO 150 1200 420 65 260 95 330 1700 620 

Xanterra 165 HC 14 110 41 6.3 25 9.2 4.8 25 9.1 

Xanterra 165 NOx 0.8 6.5 2.4 21 83 30 15 79 29 

Xanterra 166 CO 130 850 310 360 920 330 510 1800 650 

Xanterra 166 HC 15 100 36 22 57 21 30 100 38 

Xanterra 166 NOx 0.3 1.8 0.7 28 73 26 22 78 28 

Xanterra 416 CO 4.8 34 12 5.8 14 5.1 94 250 91 

Xanterra 416 HC 1.1 8.0 2.9 0.9 2.2 0.8 0.8 2.0 0.7 

Xanterra 416 NOx 0.4 3.0 1.1 21 50 18 27 72 26 

Xanterra 419
 

CO 16 120 44 35 77 28 5.8 22 8.0 

Xanterra 419
 

HC 4.2 33 12 3.3 7.2 2.6 0.4 1.7 0.6 

Xanterra 419
 

NOx 0.07 0.5 0.2 10 22 8.0 16 61 22 

Alpen Guides CO 3.7 28 10 7.5 44 16 4.9 35 13 

Alpen Guides HC 1.3 10 3.7 1.4 8.5 3.1 0.8 6.0 2.2 

Alpen Guides NOx 0.03 0.2 0.1 1.4 8.2 3.0 1.4 9.6 3.5 

Xanterra 709
 

CO 260 1600 590 580 2000 740 580 2300 850 

Xanterra 709
 

HC 13 80 29 15 57 21 51 210 75 

Xanterra 709
 

NOx 0.3 1.8 0.7 9.4 33 12 7.0 28 10 
Time-Weighted Means

 
CO 56 380 140 76 240 87 300 1100 410 

Time-Weighted Means HC 8.5 56 20 6.0 19 6.9 9.2 34 16 
Time-Weighted Means NOx 3.6 27 9.9 25 75 27 23 73 27 
Time-Weighted Means PM 0.07  0.2 0.1 0.4 0.1 0.1 0.3 0.1 

a 
g/gal and g/kg results are calculated from the reported g/sec emissions and fuel consumption. 
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service�s diesel van is the easiest to first discuss. Low CO and HC emissions are typical 

for compression ignition engines and while we did not measure the HC emissions, it is 

expected that they mirror the low CO emissions we did measure. For the loads produced 

by the tracks, it is also not a surprise that the NOx emissions are the highest for any of the 

vehicles that we measured. We do not know of any fuels or current after treatments that 

could be economically employed to reduce these emissions. The PM emissions are very 

good at 120 milligrams per mile when one considers the very high loads the vehicle 

experiences. The only negative comment one can make on the use of diesel powered 

vehicles in these conditions is that the low temperatures experienced will require the 

vehicle to be garaged or block heated overnight and some may object to the fuel odor. 

 

The modern gasoline powered vehicles present a more complicated emissions picture 

when one reviews the data from the various driving modes. All of these drive trains were 

originally certified to very low on-road tailpipe emission limits. The fact that all of these 

vehicles exhibited low idle emissions suggests that the engines still meet those original 

standards. Yet, many of the vehicles had very high over-snow emissions. There are many 

terms used when talking about computer controlled, close-loop gasoline engines. The 

�closed-loop� referred to is the link between the fuel management computer and the 

oxygen sensor or sensors in the vehicles exhaust stream. The oxygen sensors help the fuel 

management system keep the air to fuel ratio as close to stoichiometry as possible for the 

conditions. When this feedback system is operational, the vehicle is referred to as 

operating in �closed-loop mode�. The fuel management computer has the capability to 

operate the engine without this feedback mechanism, for example, if the oxygen sensor 

fails to function properly. The vehicle calibration provides the fuel management 

computer with an engine map (effectively an air to fuel ratio cheat sheet) that allows it to 

make an informed decision about how much fuel to put into the engine for the current 

conditions. This situation is often referred to as �open-loop operation.� A vehicle can 

operate in either closed or open-loop modes and still maintain its low emissions 

certification levels. However, it is also common that higher emission levels are associated 

with open-loop operation and thus many references link high emission levels with open-

loop operation. Southwest research used this term in their report.
12

 

 

A second term that more often is linked with excessive vehicle emissions is off-cycle 

emissions. All of these vehicles are certified to a series of tests conducted on a laboratory 

chassis dynamometer where the vehicle is driven over a flat (no hills in lab tests) cycle 

with predefined accelerations, decelerations, idle and cruise segments. These cycles 

contain a matrix of loads and speeds over which the manufacturer is required to meet a 

certain average emissions performance. When in-use conditions force the vehicle into an 

operating mode that is outside the laboratory conditions, the vehicle is referred to as 

operating �off-cycle.� Again, there are many off-cycle conditions in which these vehicles 

do not exceed the government-mandated tailpipe limits. However, for a properly 

maintained vehicle, excessive tailpipe emissions only occur during off-cycle driving and 

we will use this term when discussing a vehicle�s high emissions. 

 

The difference in load is probably the single biggest determining factor in the emissions 

performance of these vehicles. This difference alone insures that these coaches are never 
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operated in an on-cycle situation. For example, on-road fuel economy for these vans is 

around 15 mpg. Under the best snow conditions, these vans get 3 to 5 mpg and for heavy 

wet snow conditions 1 to 2 mpg has been reported by some of the drivers. NO emissions 

are produced in gasoline engines during lean (low CO) conditions under high temperature 

and high load conditions. This is the reason for the high NO emissions measured from 

most of these coaches, however the large amount of CO being produced would seem on 

the surface to preclude large NO emissions.  

 

In order to explain this apparently unlikely observation, Figure 14 displays a fourteen-

minute segment (4.6 miles) of second by second emissions data from Xanterra 164 (see 

Table 10 and Figure 12). Xanterra 164 is a snowbuster conversion van, measured as it 

nears the Old Faithful area. The vehicle is initially operating in a lean combustion region 

with low CO and HC emissions and high NO emissions as it travels along a short 

downgrade. At a constant speed and engine rpm, the grade changes, the throttle is 

increased and forces the engine into a rich combustion region with very high CO 

emissions, increased HC emissions and low NO emissions. At about 11:32:20 the driver 

rapidly decelerates and as the CO emissions drop, a large HC emissions spike is recorded. 

The HC puff is due to this older model engine�s throttle body fuel injector not being able 

to shut the fuel off as fast as it shuts the air off. The term �manifold flash� is often used. 

This phenomenon results in the catalyst having no available oxygen to oxidize the puff of 

unburned fuel. For this 4.6 mile segment the gram per mile emissions are 330, 4.1 and 19 

grams/mile respectively for CO, HC and NOx. 

 

Figure 14 illustrates how we achieved high averaged levels of CO and NO concurrently 

(see Tables 11 and 12). There exists a load point about which the coach alternates 

between on-cycle (lean combustion) operation and off-cycle (rich combustion) operation. 

Peak power in a gasoline engine is usually achieved at around a 4% CO level. The high 

levels of CO (> 10%) would only make sense if the vehicle is trying to protect the engine 

and catalyst from over heating and catalyst destruction. All of the drive trains and 

emissions systems were designed for wheeled traveled. Because of the track conversion, 

the engine computer believes the coach is traveling in excess of 70 mph. The only on-

road situation that might have been anticipated with this combination of load and 

perceived high speed is an extreme mountain, trailer towing situation where overheating 

would be a real concern. Excess fuel causes high CO levels but lowers combustion 

temperatures and completely precludes any catalytic activity thus lowering engine and 

valve temperatures and keeping the catalytic converter, safe from burning itself up. 

 

A similar fourteen-minute segment (5.6 miles) of second by second emissions data is 

graphed in Figure 15 from Xanterra 416 (see Table 10). Xanterra 416 is a Mat-trax 

conversion van, shown again as it approaches Old Faithful. Again, the vehicle alternates 

about a load point between regions of rich and lean engine operation due to an apparent 

lack of power. The rapid increases and decreases in the engine rpm�s shown in the middle 

graph of Figure 15 highlight this vehicle�s struggle to maintain speed with frequent 

shifting between second (high rpm�s) and third gear (low rpm�s). Each time this vehicle 
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Figure 14. Second by second emissions, engine and vehicle data collected during a 

fourteen-minute segment (4.6 miles) from Xanterra 164 as it nears Old Faithful. For this 

segment the CO, HC and NOx emissions were 330, 4.1, and 19 grams/mile. 
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Figure 15. Second by second emissions, engine and vehicle data collected during a fourteen-

minute segment (5.6 miles) from Xanterra 416 as it nears Old Faithful. For this segment the 

CO, HC and NOx emissions were 310, 1.2, and 28 grams/mile. 
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shifts into third, it does not have enough power to maintain speed and the engine rpm�s 

begin to lag. The driver gives it full throttle and the extra fuel sent to the engine as a 

power enrichment command causes the CO emissions to increase. However, the power is 

inadequate and eventually the vehicle downshifts back to second and reenters the lean 

combustion region and high NO emissions and the cycle repeats itself. Just before 11:51 

and at 11:57, power enrichment is also apparent even when the vehicle is in second gear. 

The lower power to weight ratio of this vehicle directly results in higher CO and HC 

emissions and poorer fuel economy. 

 

Figure 16 details this section of driving by plotting the vehicles GPS speed divided by its 

engine rpm, which groups similar gear ratios. This again shows that this coach is unable 

to spend very much time in third gear. Simply increasing the engine size of this vehicle 

will likely be enough to eliminate most of the power enrichment excursions experienced 

by Xanterra 416 for these snow conditions. Xanterra 419 is an identical coach to Xanterra 

416 except that it is equipped with a larger 8.1L engine. Unfortunately we were 

unsuccessful in collecting either emissions or engine data during this same stretch of 

roadway for comparison. We have anecdotal information from Xanterra that the coach 

with the larger engine gets better fuel economy (limited data from Table 2 also reflects 

this). This otherwise counterintuitive conclusion would be consistent with the coach 

having fewer excursions into the power enrichment mode experienced by coach 416. 

Figure 16. Graph of speed/rpm versus time for Xanterra 416. Gear groupings are noted 

along the right hand axis. 
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All of the coaches utilizing the modern closed-loop computer controlled engines that we 

tested have a load point that, when exceeded, resulted in the engine control system going 

from lean or stoichiometric to rich operation. Depending on the power to weight ratio and 

snow conditions this load point will change from day to day and coach to coach. Even the 

Alpen Guides Bombardier equipped with the modern engine, which was measured with 

the lowest overall emissions, briefly went into power enrichment during an aggressive 

acceleration. One, perhaps unexpected, conclusion is that gasoline powered coaches need 

to be purchased with the largest engine possible to meet the power demands of over snow 

operation. 

 

The final vehicle group is represented by Xanterra 709, which is a vintage Bombardier 

operating with a carbureted V-8 engine and no emissions aftertreatment. Figure 17 details 

a fourteen-minute segment (5.7 miles) from this coach as it traverses a downgrade in the 

Canyon area with 490, 74, and 4.9 grams/mile for CO, HC and NOx. Since this coach was 

not computer equipped there is no throttle position data and the rpm data are nosier due to 

it being measured with an inductive pickup clamped to a spark plug wire. The two 

noticeable operating characteristics of this engine during this segment is that there really 

are no lean operating conditions and the HC emissions are so high that cylinder misfires 

must be occurring during the decelerations. The HC emissions are so high (they are 

beginning to approach two-stroke snowmobile territory) they are inadvertently helping to 

lower the CO emissions since a large portion of the fuel is not being combusted. The 

downgrade is increasing the HC emissions, however as shown in Table 11 this vehicle 

still has very high HC emissions overall. It should be pointed out that simply adding 

emissions after treatment, like an oxidation catalyst, would do nothing to reduce the 

emissions of this vehicle. The Park Service would do well to discourage carbureted 

vehicles at any time of year. 

 

If we arbitrarily define off-cycle operation as anytime a vehicles tailpipe CO levels 

exceeds 3% we can calculate the percent of off-cycle operation for each of the coaches. 

The choice of 2, 3 or 4% CO does not change the off-cycle operations percentages very 

much since most of the coaches greatly exceeded this value during actual operation. 

Table 14 breaks out all of the non-idle operations by coach, inbound or outbound route 

segment and the percent of time that the tailpipe emissions exceeded 3% CO defining off-

cycle operation. Keep in mind that coaches were operated on different routes and even 

those that were operated on the same routes have data that may not overlap. As will be 

discussed later the coaches are driven harder on the homebound leg and this is reflected 

in the higher percentage of off-cycle operation in the outbound segment. The diesel 

powered NPS Van and all of the newer gasoline powered coaches spent the least amount 

of time in off-cycle operation. The early 90�s conversion vans spend almost half their 

operation time off-cycle in the afternoon while the morning is much lower due to lower 

speed operation. The vintage Bombardier as shown before is high emitting all of the time. 

The time weighted averages are 20% off-cycle operation for inbound trips and 29% for 

outbound. 

 

The coaches that serve the north entrance have two different activity patterns. Generally, 
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Figure 17. Second by second emissions, engine and vehicle data collected during a 

fourteen-minute segment (5.7 miles) from Xanterra 709 in the Canyon area. For this 

segment the CO, HC and NOx emissions were 490, 74, and 4.9 grams/mile. 
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the morning drive to Old Faithful or Canyon is filled with many stops and starts 

connected by short cruise segments. This activity pattern is for sight seeing and stopping 

to watch the animals encountered. With the exception of Xanterra 709, all of the coaches 

tested have very low idle emissions (see Table 13). The afternoon drives are often filled 

with weary travelers that just want to get home. Consequently, there are long periods of 

high-speed cruise. Table 15 breaks out these differences, excluding all of the idle data, 

for four of the coaches where we have ample data from the inbound and outbound trips. 

The Alpen Guides coach trip was not truly a commercial trip due to a last minute 

passenger cancellation, but we even acted more like tourists in the morning. As 

evidenced by the differences in average speeds the outbound trips consequently have 

longer periods of high-speed operation increasing the amount off-cycle emissions (see 

Table 14).  

 

Table 14. Estimated off-cycle operation by route segment for non-idle operation. 

Vehicle Segment Seconds Collected Percent Off-Cycle  

Operation (%CO > 3) 

NPS Van In 6,077 0% 

NPS Van Out 9,568 0% 

NPS Van Total 15,645 0% 

Xanterra 163 In 8,859 36.1% 

Xanterra 163 Out 6,135 50.3% 

Xanterra 163 Total 14,994 41.9% 

Xanterra 164 In 8,488 20.6% 

Xanterra 164 Out 5,326 50.2% 

Xanterra 164 Total 13,814 32.0% 

Xanterra 165 In 5,403 15.1% 

Xanterra 165 Out 6,030 41.2% 

Xanterra 165 Total 11,433 28.9% 

Xanterra 166 In 0  

Xanterra 166 Out 6,545 44.1% 

Xanterra 166 Total 6,545 44.1% 

Xanterra 416 In 5,997 6.3% 

Xanterra 416 Out 0  

Xanterra 416 Total 5,997 6.3% 

Xanterra 419 In 821 0% 

Xanterra 419 Out 0  

Xanterra 419 Total 821 0% 

Alpen Guides In 6,042 0.08% 

Alpen Guides Out 4,684 0.06% 

Alpen Guides Total 10,726 0.07% 

Xanterra 709 In 2,835 98.1% 

Xanterra 709 Out 0  

Xanterra 709 Total 2,835 98.1% 
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The differences in the amount of high speed driving is an important distinction because, 

as discussed above, the higher the power demand the more likely the vehicle will cross its 

load threshold and enter rich engine operation. This is in fact seen for the three Xanterra 

coaches where CO emissions are larger for the outbound trips. The Alpen Guides coach 

does not show this difference as it had ample power to stay out of the power enrichment 

region. Any of the coaches that experience rich engine operation due to higher loads on 

the inbound trip would be expected to have higher average emissions on the outbound 

trip. 

 

Previously the only snowcoach emissions data was available from a V-10 powered Ford 

E350, 15 passenger van collected by Southwest Research Inc.
12

 Under the maximum load 

conditions possible with their chassis dynamometer they reported 99, 1.6 and 1.8 g/mile 

emissions for CO, HC and NOx representing a maximum off-cycle emissions level. The 

NOx emissions are very low (even lower for the on-cycle measurements) when compared 

to the current data set and indicate that the dynamometer operating conditions are not as 

demanding as we observed in actual use. Our field experience would suggest that with a 

V-10 powered van the load point that separates lean (on-cycle) and rich (off-cycle) 

operation would be pushed higher than we observed for a similar sized van with a smaller 

engine (Xanterra coach 416 with cruise emissions of 94, 0.8 and 27 g/mile). Since the 

larger engine in the Ford should lead to less off-cycle excursions than Xanterra 416, we 

would expect lower CO and HC emissions and much higher NOx emissions than 

observed on the dynamometer.

Table 15. A Comparison of inbounds versus outbound emissions for four coaches. 

Sampled Gram/mile Emissions 
Vehicle Segment 

Hours Miles 

Mean GPS 

Speed CO HC NOx 

Xanterra 163 In 2.5 45.5 18.5 550 6.6 29 

Xanterra 163 Out 1.7 38.1 22.4 650 6.3 22 

Xanterra 164 In 2.4 43.6 18.5 350 4.8 26 

Xanterra 164 Out 1.5 34.4 23.3 580 5.5 9.5 

Xanterra 165 In 1.5 28.7 19.2 200 4.4 21 

Xanterra 165 Out 1.7 40.9 24.4 380 5.3 12 

Alpen Guides In 1.7 29.9 17.8 5.6 1.2 1.3 

Alpen Guides Out 1.3 31 23.8 4.9 0.6 1.4 
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COMPARISON OF SNOW VEHICLE EMISSIONS 

 

The data collected during this study allow one to estimate the emissions impacts from the 

various transportation options available in Yellowstone during the winter. Table 16 

combines emission measurements, winter visitor statistics obtained from the National 

Park Service Public Use Statistics Office with fuel economy assumptions for the 

snowmobile fleets to calculate a gram/mile/person emissions estimate. The snowmobile 

CO and NO values are averages of the entrance and exit measurements and the 

snowmobile NO measurements have been converted to NO2 emissions for a direct 

comparison. The snowcoach emissions are a time weighted average of all the data 

collected (see Table 11). To convert the snowmobile gram/gallon measurements to 

grams/mile estimates we have assumed a 2-stroke fuel economy of 13 miles per gallon 

and for 4-strokes 18 miles per gallon.
7, 24

 Snowmobile entries for 1999 were 62,878 with 

76,271 passengers for a 1.2 persons/snowmobile average. Snowmobile entries for 2005 

were 18,364 with 24,049 passengers for a 1.3 persons/snowmobile average. Snowcoach 

entries for 2005 were 2,201 with 17,218 passengers for a 8.5 persons/coach average. 

Mean snowmobile emissions/person have dropped 61% for CO and 96% for HC with the 

introduction of 4-stroke snowmobiles. Previous work has shown than 4-stroke 

snowmobiles emit considerably more NO than 2-strokes and therefore it is a safe 

assumption that 4-stroke snowmobiles have increased per person NO emissions.
11

 Also, 

as the price of snowmobile rentals has increased there has been a slight increase in the 

number of riders doubling up. When comparing the measured mean snowmobile with the 

measured mean snowcoach emissions/person the snowmobiles are a little better for CO 

and a little worse for HC and NOx. The comparison can swing from one extreme to the 

other by having a snowcoach fleet of all vintage (the highest gram/mile/person emissions) 

or all upgraded (the lowest gram/mile/person emissions) Bombardiers. The comparison 

will also be negatively impacted on the snowmobile side if Ski Doo riders were increased 

disproportionately.  

The nine snowcoaches we measured should not be construed as adequately representing 

the average snowcoach fleet used in the park during the winter months. For example 1/9 

or our measured fleet was a vintage Bombardier and 1/9 was a diesel. The number of 

vintage Bombardiers with uncontrolled carbureted engines still operating in the park 

means that the percentage of passengers being transported by them is much higher than 

the average weighting in Table 16. This will most likely result in a higher CO and HC 

and lower NOx emissions per person than the snowcoach means in Table 16. However, 

these data allow the construction of a more representative 2005 fleet emissions average 

by distributing the measured emissions by technology class across the passenger fractions 

carried by each technology class. 
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Table 16. Estimated gram/mile/person emissions for Yellowstone winter transportation 

options. 

Mean grams/gal
a,b Mean g/mile 

(Estimated g/mile)
c 

Estimated 

g/mile/person
d 

Data 

CO HC
 

NOx CO HC
 

NOx CO HC
 

NOx 

1999 Mean  

2-stroke 

Snowmobile 

1100 1400 NA (85) (110) NA 71
 

92
 

NA 

2005 Mean 

4-stroke 

Ski Doo Fleet 

1400 110 6.6 (78) (6.1) (0.4) 60
 

4.7
 

0.3 

2005 Mean 

4-stroke 

Snowmobiles 

670 80 64 (37) (4.4) (3.6) 28
 

3.4
 

3.4 

2005 Mean  

4-stroke 

Arctic Cat Fleet 

570 72 78 (32) (4) (4.3) 25
 

3.1
 

3.3 

2005 Highest 

Emissions  

Snowcoach
e 

2200 180 27 630 50 7.7 74 5.9 0.9 

2005 Mean 

Snowcoach 
1000 37 71 300 10 24 35 1.2 2.8 

2005 Lowest 

Emissions 

Snowcoach
f 

36 6.5 9.1 5.3 1 1.4 0.6 0.1 0.2 

a
 grams/gallon calculations for the snowmobiles assume a fuel density of 726 g/l. 

b
 Snowmobile NO emissions have been converted to NO2. 

c 
Snowmobile g/mile estimates use 13 mpg for 2-strokes and 18 mpg for 4-strokes. 

d
 Data obtained from the National Park Service Public Use Statistics Office 

e
 Xanterra coach 709, vintage Bombardier with carbureted engine. 

f
 Alpen Guides Delacy, vintage Bombardier converted to a modern fuel injected engine 

with exhaust after treatment. 
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APPENDIX A: FEAT Validity Criteria. 

  

Not measured: 

 

1)  Beam block and unblock and then block again with less than 0.5 seconds clear to the 

rear. Often caused by elevated pickups and trailers causing a �restart� and renewed 

attempt to measure exhaust. The restart number appears in the database. 

2) Vehicle which drives completely through during the 0.4 seconds �thinking� time 

(relatively rare). 

 

Invalid: 

  

1) Insufficient plume to rear of vehicle relative to cleanest air observed in front or in the 

rear; at least five, 10ms averages >0.25% CO2 in 8 cm path length. Often heavy-duty 

diesel trucks, bicycles.  

  

2) Too much error on CO/CO2 slope, equivalent to +20% for %CO. >1.0, 0.2%CO for 

%CO<1.0.   

 

3) Reported %CO, <-1% or >21%. All gases invalid in these cases.  

 

4) Too much error on HC/CO2 slope, equivalent to +20% for HC >2500ppm propane, 

500ppm propane for HC <2500ppm.   

 

5) Reported HC <-1000ppm propane or >40,000ppm. HC �invalid�.   

 

6) Too much error on NO/CO2 slope, equivalent to +20% for NO>1500ppm, 300ppm 

for NO<1500ppm.   

 

7)  Reported NO<-700ppm or >7000ppm. NO �invalid�. 

 

Speed/Acceleration valid only if at least two blocks and two unblocks in the time buffer 

and all blocks occur before all unblocks on each sensor and the number of blocks and 

unblocks is equal on each sensor and 100mph>speed>5mph and 14mph/s>accel>-

13mph/s and there are no restarts, or there is one restart and exactly two blocks and 

unblocks in the time buffer. 
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APPENDIX B: Explanation of the YPsled05.dbf database. 

 

The YPsled05.dbf is a Microsoft Foxpro database file, and can be opened by any version 

of MS Foxpro, regardless of platform.  The following is an explanation of the data fields 

found in this database: 

Make Manufacturer of the vehicle. 

Year Model year of the vehicle. 

Stroke  Engine type. 

Guide  �Y� indicates a snowmobile driven by the professional guide. 

Snow_Coach �Y� indicates an exhaust measurement from a snowcoach. 

Location �I� denotes entrance and �O� denotes exit.  

Date Date of measurement, in standard format. 

Time Time of measurement, in standard format. 

Percent_co Carbon monoxide concentration, in percent. 

Co_err Standard error of the carbon monoxide measurement.  

Percent_hc Hydrocarbon concentration (propane equivalents), in percent. 

Hc_err Standard error of the hydrocarbon measurement. 

Percent_no Nitric oxide concentration, in percent. 

No_err Standard error of the nitric oxide measurement reported as NO. 

Percent_co2 Carbon dioxide concentration, in percent. 

Co2_err Standard error of the carbon dioxide measurement. 

Restart Number of times data collection is interrupted and restarted by a close-

following vehicle, or the rear wheels of tractor trailer. 

Hc_flag Indicates a valid hydrocarbon measurement by a �V�, invalid by an �X�. 

No_flag Indicates a valid nitric oxide measurement by a �V�, invalid by an �X�. 

Max_co2 Reports the highest absolute concentration of carbon dioxide measured by 

the remote sensor; indicates the strength of the observed plume. 

Speed_flag Indicates a valid speed measurement by a �V�, an invalid by an �X�, and 

slow speed (excluded from the data analysis) by an �S�. 

Speed Measured speed of the vehicle, in mph. 

Accel Measured acceleration of the vehicle, in mph/s. 

Ref_factor Reference detector voltage. 

CO2_factor CO2 detector voltage. Used along with �Ref_factor� to observe calibration 

shifts. 
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APPENDIX C: Montana System Specifications  

 

 

 

Gas Measurement 

Range 

Accuracy Repeatability Noise (rms) Resolution 

HC 

n-Hexane 

0 - 2000 ppm 

 

2001 - 1500 ppm 

15001 - 30000 ppm 

±4 ppm abs. 

or ±3% rel. 

±5% rel. 

±8% rel. 

±3 ppm abs. 

or ±2% rel. 

±3% rel. 

±4% rel. 

2 ppm abs. 

or 0.8% rel. 
1 ppm 

HC 

Propane 

0 - 4000 ppm 

 

4001 - 30000 ppm 

30001 - 60000 ppm 

±8 ppm abs. 

or ±3% rel. 

±5% rel. 

±8% rel. 

±6 ppm abs. 

or ±2% rel. 

±3% rel. 

±4% rel. 

4 ppm abs. 

or 0.8% rel. 
1 ppm 

CO 

0 - 10 % 

 

10.01 - 15% 

±0.02% abs. 

or ±3% rel. 

±5% rel. 

±0.02 abs.  

or ±2% rel. 

±3% rel. 

0.01% abs. 

or 0.8% rel. 
0.001 vol. % 

CO2 

0 - 16%  

 

16.01 - 20% 

±0.3% abs. or 

±3% rel. 

±5% rel. 

±0.1% abs.  

or ±2% rel. 

±3% rel. 

0.1% abs.  

or 0.8% rel. 
0.01 vol. % 

NOx 

0 - 4000 ppm 

 

4001 - 5000 ppm 

±25 ppm abs. 

or ±4% rel. 

±5% rel. 

±20 ppm abs. 

or ±3% rel. 

±4% rel. 

10 ppm abs. 

or 1% rel. 
1 ppm 

O2 0.00 - 25% 
±0.1% abs. or 

±3% rel. 

±0.1% abs. or 

±3% rel. 

0.1% abs. or 

1.5% rel. 
0.01 vol. % 
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APPENDIX D: Explanation of the SC_YST05.dbf database. 

 

The SC_YST05.dbf is a Microsoft Foxpro database file, and can be opened by any 

version of MS Foxpro, regardless of platform. The following is an explanation of the data 

fields found in this database: 

Vehicle Name of vehicle that includes the company and vehicle identifier. 

Sheet_name Companion excel spreadsheet name which contained the original records. 

Date Date of measurement, in standard format. 

Time Time of measurement, in standard format. 

Time_sec Time of measurement, in seconds. 

Org_valid Gram/sec validity flag reported at time of data collection (YES or NO). 

Valid_g_s Gram/sec validity flag used for calculations in the report after known leaks 

and instrument problems have been removed (YES or NO). 

Bag_no Virtual collection bag number for labeling data collection events. 

Bg_dist_mi OBD (if available) reported mileage accumulation for Bag_no. 

Bg_time_s Accumulated time in seconds for Bag_no. 

Mph  OBD (if available) reported speed in miles per hour. 

Accel  OBD (if available) reported acceleration in mph/sec. 

Sensed_rpm Sensor array (if used) measured engine rpm. 

S_temp_c Sensor array (if used) measured intake air temperature in centigrade. 

S_map_kpa Sensor array (if used) measured absolute intake manifold pressure in 

kilopascals. 

Eng_rpm OBD (if available) reported engine rpm. 

Coolant_c OBD (if available) reported coolant temperature in centrigrade. 

Throttle OBD (if available) reported percent throttle. 

Map_kpa OBD (if available) reported absolute intake manifold pressure in 

kilopascals. 

Iat_c  OBD (if available) reported intake air temperature in centigrade. 

Torque_lbf OBD (if available) reported engine torque in foot-pounds. 

Ntkair_g_s Calculated grams per second of intake air. 

Dryexh_g_s Calculated grams per second of dry exhaust. 

Totex_scfm Calculated total exhaust flow in standard cubic feet per minute. 

Fuel_g_s Calculated fuel consumption in grams per second. 

Fuel_mpg OBD (if available) reported fuel economy in miles per gallon. 
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V_fuelmpg Validity flag for OBD reported Fuel_mpg (YES or NO). 

Nox_ppm Mean NO emissions in parts per million. 

HC_ppm Mean HC emissions in parts per million in propane units. 

CO_p Mean percent CO emissions. 

CO2_p Mean percent CO2 emissions. 

O2_p  Mean percent O2 emissions. 

Pm_pfs PM Percent full scale of back scattered laser light. 

Pm_mg_m3 Calculated PM in milligrams per cubic meter of exhaust if valid. 

Nox_g_s Calculated NO2 emissions in grams per second if valid. 

Hc_g_s Calculated HC emissions in grams per second if valid. 

Co_g_s Calculated CO emissions in grams per second if valid. 

Co2_g_s Calculated CO2 emissions in grams per second if valid. 

Pm_mg_s Calculated PM emissions in milligrams per second if valid. 

A_valid Validity flag for analyzer bench A (Yes or No). This flag is misreported in 

all of our data sets. It is always No even when the data is used in the 

composite average. 

A_stats Decimal representation of a series of binary bench A status flags. 

A_nox_ppm Bench A reported NO emissions in parts per million if valid. 

A_hcppm Bench A reported HC emissions in parts per million if valid. 

A_co_p Bench A reported percent CO emissions if valid. 

A_co2_p Bench A reported percent CO2 emissions if valid. 

A_o2_p Bench A reported percent O2 emissions if valid. 

B_valid Validity flag for analyzer bench B (Yes or No). This flag is reported 

correctly in all of our data sets. 

B_stats Decimal representation of a series of binary bench B status flags. 

B_nox_ppm Bench B reported NO emissions in parts per million if valid. 

B_hcppm Bench B reported HC emissions in parts per million if valid. 

B_co_p Bench B reported percent CO emissions if valid. 

B_co2_p Bench B reported percent CO2 emissions if valid. 

B_o2_p Bench B reported percent O2 emissions if valid. 

Gps_fix Status of GPS receiver fix (No fix or Fix OK). 

Gps_sats If GPS receiver is lock in this reports the number of satellites used to 

calculate the receivers position. 

Gps_time Time reported by the GPS receiver. 
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Gpsspd_mph Calculated vehicle speed in miles per hour using the second by second 

GPS position data if available. 

Latitude GPS latitude reported in degrees and decimal minutes of the vehicle if 

fixed. 

Lat_deg Latitude converted to decimal degrees. 

Longitude GPS longitude reported in degrees and decimal minutes of the vehicle if 

fixed. 

Long_deg Longitude converted to decimal degrees. 

Alt_m  GPS reported altitude in meters if fixed. 

Gpsdist_m Calculated changed in distance in meters from the last valid GPS location. 
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APPENDIX E: Summary of invalidated snowcoach data. 

 

This appendix does not include every invalidated record but does try and describe the 

majority of the records that have been invalidated and the reasons for that classification. 

Note that many problems were intermittent in nature and may have caused problems with 

data collection over an extended period of time until resolved. 

 

NPS Diesel (2/7/05) - 146 seconds of data invalidated. 

   16:28:03 - 16:28:58 - no exhaust. 

   17:18:57 - 17:20:26 - no exhaust.    

 

NPS Diesel (2/8/05) - 3,501 seconds of data invalidated. 

09:48:06 - 09:49:41 - no exhaust, purge line frozen. 

10:40:22 - 10:40:38 - no exhaust.  

13:57:00 - 14:03:44 - no exhaust, power problems. 

14:07:25 - 14:58:47 - frozen inlet / melted sampling line. 

15:08:42 - 15:18:09 - no exhaust. 

16:07:25 - 16:07:47 - no exhaust. 

 

Snowbuster 164 - 3,344 seconds of data invalidated. 

   07:12:56 - 07:25:57 - no exhaust. 

   07:45:49 - 07:45:48 - no exhaust. 

   08:16:03 - 08:16:14 - water in filter. 

   08:29:52 - 08:31:27 - no exhaust, negative CO2. 

   08:52:11 - 08:53:10 - no exhaust, negative CO2. 

   09:12:29 - 09:13:27 - no exhaust, negative CO2. 

   09:26:42 - 09:27:04 - no exhaust, negative CO2. 

   11:00:12 - 11:00:33 - no exhaust, negative CO2. 

   11:45:41 - 11:47:48 - no exhaust, negative CO2. 

   13:41:19 - 13:41:47 - no exhaust. 

   13:46:22 - 13:48:26 - no exhaust. 

   13:51:21 - 14:08:22 - no exhaust, flow restriction. 

   14:11:54 - 14:13:46 - no exhaust, flow restriction. 

   14:17:03 - 14:18:59 - no exhaust, flow restriction. 

   16:55:56 - 16:57:25 - no exhaust, frozen purge line. 

   17:30:13 - 17:44:06 - no exhaust, end of run. 

 

Bombardier  -  3,354 seconds of data invalidated. 

to Canyon  08:29:56 - 08:51:37 - no exhaust. 

   08:58:22 - 09:00:19 - no exhaust. 

   09:03:26 - 09:06:45 - flow restriction. 

   09:16:03 - 09:17:59 - flow restriction. 

   09:21:06 - 09:27:55 - flow restriction. 

   09:31:08 - 09:37:58 - flow restriction, no exhaust. 

   09:41:09 - 09:43:03 - frozen inlet, no exhaust. 

   09:46:08 - 09:54:34 - no exhaust. 
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   09:56:09 - 09:59:02 - flow restriction. 

 

Mat-trax 419 - 17,860 seconds of data invalidated. We know from the following 

days activities that this measurement run suffered terribly from a 

cracked inlet hose fitting. This allowed cold air to be sucked into 

the inlet hose creating ice that blocked the sampling hose. Most of 

the morning data was lost because the ice would reform as soon as 

it was cleared. All of the afternoon data has been invalidated 

because the instrument was unattended for the return trip and while 

data was collected, the inlet iced very soon after leaving Old 

Faithful restricting the inlet flow.  

   07:09:55 - 07:11:35 - no exhaust, startup. 

   07:41:19 - 07:44:56 - flow restriction. 

   07:46:00 - 07:58:04 - flow restriction, no exhaust. 

 08:44:38 - 09:06:52 - major intermittent problems with flow. Large 

positive and negative emission values. 

09:13:47 - 09:15:39 - remove because the data is sandwiched 

between two sections with major flow problems. 

   09:23:49 - 09:25:40 - leak evident. 

   09:32:05 - 09:33:59 - flow restrictions with negative CO�s. 

   09:38:54 - 09:40:49 - flow restriction. 

   09:48:56 - 09:50:47 - flow restriction. 

   09:55:55 - 09:57:46 - no exhaust. 

   10:05:57 - 10:07:48 - no exhaust. 

   10:15:58 - 10:17:50 - no exhaust. 

   10:23:04 - 10:25:03 - flow restriction. 

   10:39:30 - 10:40:51 - engine data invalid. 

   10:48:58 - 11:00:52 - engine data invalid. 

   11:09:02 - 11:10:52 - engine data invalid. 

   11:16:22 - 11:18:17 - engine data invalid. 

   11:24:07 - 11:26:02 - engine data invalid. 

   11:34:09 - 11:36:04 - engine data invalid. 

   11:41:23 - 11:53:16 - engine data invalid. 

   12:01:26 - 12:03:17 - engine data invalid. 

 13:42:01 - 17:27:42 - unattended afternoon run, flow restriction 

developed within 5 minutes of start of data collection. 

   20:01:01 - 20:01:52 - no exhaust. 

 

Snowbuster 165 - 6,436 seconds of data invalidated. 

   07:23:12 - 07:23:57 - no exhaust. 

   07:26:03 - 07:27:04 - no exhaust. 

   07:31:53 - 07:58:15 - no exhaust, leaks, flow restrictions. 

   08:06:39 - 08:19:44 - no exhaust, major leak. 

   08:21:25 - 08:39:33 - no exhaust, major leak. 

   08:41:34 - 09:17:24 - no exhaust, major leak. 
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   09:19:38 - 09:32:34 - no exhaust. 

 09:34:12 - 09:37:02 - no exhaust. Cracked fitting found and 

temporarily repaired with duct tape. 

   11:03:07 - 11:03:58 - no exhaust. 

   11:19:50 - 11:20:48 - no exhaust. 

   13:46:46 - 13:50:46 - no exhaust. 

   16:05:19 - 16:05:22 - flow restriction. 

 

Snowbuster 166 - 1 second of data invalidated. 

   15:16:63 - negative CO2 reading. 

 

Mat-trax 416 - 194 seconds of data invalidated. 

   07:34:36 - 07:37:49 - no exhaust. 

 

Snowbuster 163 - 509 seconds of data invalidated. 

   07:47:43 - 07:54:25 - no exhaust. 

   08:14:13 - 08:14:41 - no exhaust. 

   08:39:13 - 08:40:29 - no exhaust. 

 

Alpen Guides - 54 seconds of data invalidated. 

Bombardier  09:23:44 - 09:24:16 - no exhaust. 

   12:33:49 - 12:34:09 - no exhaust. 
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APPENDIX F: Snowcoach travel maps with location of valid gram/second 

emissions. 

 

Figure B2. NPS diesel Van trip on February 7, 

2005. This was a roundtrip from the maintenance 

garage to the Mammoth Post Office. 

 

Figure B1. NPS diesel Van trip on February 8, 

2005. Roundtrip from the north entrance traveling 

clockwise around the lower loop. 

 

Figure B3. Xanterra Van #163 trip on February 

15, 2005. This was a roundtrip from the north 

entrance to Old Faithful. 

 

Figure B3. Xanterra Van #164 trip on February 

9, 2005. This was a roundtrip from the north 

entrance to Old Faithful. 
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Figure B5. Xanterra Van #165 trip on February 

12, 2005. This was a roundtrip from the north 

entrance to Old Faithful. 

 

Figure B6. Xanterra Van #166 trip on February 

13, 2005. This was a one way trip from Old 

Faithful to the north entrance. 

 

Figure B7. Xanterra Van #416 trip on February 

14, 2005. This was a roundtrip from the north 

entrance to Old Faithful. 

 

Figure B3. Xanterra Van #419 trip on February 

11, 2005. This was a one way trip from the north 

entrance to Old Faithful. 
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Figure B9. Xanterra Bombardier #709 trip on 

February 10, 2005. This was a roundtrip from the 

north entrance to Canyon. This vehicle had two 

labeled periods where valid data was collected 

but the GPS was not reporting. 

 

Figure B10. Alpen Guides Bombardier Delacy 

trip on February 18, 2005. This was a roundtrip 

from the west entrance to Old Faithful. 

 



 

 57   

Figure B11. A more detailed graphing of Xanterra #163 CO emissions during its 

roundtrip excursion to Old Faithful on February 15, 2005.
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Figure B12. A more detailed graphing of Xanterra #164 CO emissions during its 

roundtrip excursion to Old Faithful on February 9, 2005.
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APPENDIX G: Society of Automotive Engineers Publication 2001-01-3641. 
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ABSTRACT 

To complement laboratory emissions tests and to obtain 
emissions data for events that are difficult to simulate, a 
portable, on-board mass exhaust emissions monitoring 
system has been developed. The system utilizes NDIR 
for CO and CO

2
, an electrochemical cell for NO

x
 and 

laser light scattering detectors for PM real-time 
concentrations measurements. Exhaust flow is 
determined computationally from engine operating data 
using mass balance equations. The system is designed 
to easily and quickly install on a large variety of vehicles, 
including buses with passengers on board, and to 
produce a wealth of on-road data with minimal downtime 
and travel of the vehicle tested. 

INTRODUCTION 

Internal combustion engines are a substantial (and often  
leading) source of various air pollutants, primarily volatile 
organic compounds (VOC), carbon monoxide, nitrogen 
oxides, and respirable aerosols and carbonaceous 
particulate matter. As a response to stricter emissions 
standards, late-model engines tested new or early in 
their useful lives exhibit significantly lower emission 
levels than in the past. As this is accomplished primarily 
by sophisticated electronic engine controls and high-
efficiency aftertreatment devices, it is possible - and in 
many cases documented - that a large portion of total 
emissions is attributable to (a) the small fraction of 
vehicles exhibiting high emission levels, (b) high-
emissions episodes consisting of a small fraction of the 
total operating time, and in some cases, (c) high 
emissions produced under environmental and operating 
conditions different from those covered by standard 
laboratory engine or vehicle emissions tests (i.e, Wenzel 
and Ross, 1998; Kelly and Groblicki, 1993; St. Denis et 
al., 1994). Further, it has been documented that 
otherwise identical vehicles may have significantly 
different emissions characteristics (i.e., Deaton and 
Winebrake, 2000). In addition to emission characteristics 
inherent to the engine, emission levels also depend on 
the conditions under which the engine or vehicle is being 
operated. 

Because of the number of factors involved, an accurate 
evaluation of life-cycle emissions, even of an "ideal fleet" 
(in which all engines and/or vehicles are identical, run on 
the same fuel, and are all used for the same purpose in  
a set geographical area), would require the emissions 
measurement to be done (a) on a relatively large 
number of vehicles, (b) at various points throughout their 
actual operating life, and (c) during typical, everyday 
operation of the vehicles.  

To reduce motor vehicle emissions, new fuels, engine 
technologies, exhaust aftertreatment devices, driver 
improvement programs and other emissions reduction 
strategies are being introduced, often at a considerable 
expense. In order to choose those strategies offering 
maximum emissions reduction for a given cost, it is 
desirable to evaluate the actual emissions benefits of 
each strategy. This may be done by comparing the 
emissions produced by a fleet employing the new 
strategy with emissions produced by an otherwise 
comparable "conventional" fleet. 

The traditional emissions testing approach is to take a 
vehicle out of service, transport it to an emissions testing 
laboratory, and to operate it on a chassis dynamometer 
using a simulated driving pattern (driving cycle). Often, 
heavy equipment cannot be tested on a chassis 
dynamometer, and the engine needs to be removed for 
testing on an engine dynamometer. Due to the 
considerable expense of this type of testing, only a small 
number of vehicles are tested, during a limited range of 
climatic and operating conditions. 

As an alternative to the traditional method, various on-
board emissions monitoring systems have been 
developed, ranging from instrumented vehicles to 
portable, on-board emissions monitoring systems that 
can be easily and quickly moved from vehicle to vehicle. 
Key parameters of such a system typically include its 
size, weight, power requirements, initial and operating 
costs, robustness, reliability, installation time, the extent 
of modifications to the tested vehicle, the level of real or 
perceived danger to the public, the variety of pollutants 
measured and accuracy. As the parameters often 



represent competing goals, various on-board system 
designs are optimized for different parameters, 
depending on the application of a particular system. 

The goal of this study was to develop a portable, on-
board system for monitoring mass emissions of NO

x
, 

CO
2
 and particulate matter (PM) on heavy-duty diesel 

vehicles. The goal was to produce a system that can be 
easily and quickly installed on a large variety of vehicles, 
requires no modification to the tested vehicle, and can 
be safely used on buses during regular operation, with 
passengers on board.  

This paper presents the technical description of the 
system and a discussion of design choices made given 
the application constraints, and presents the results of 
preliminary validation testing of the system and the path 
for future development. 

APPARATUS DESIGN 

DESIGN PROCESS - If the primary goal in designing a 
portable, on-board system is to obtain in-use emissions 
data on a variety of vehicles, then such a system has to 
be transferrable from vehicle to vehicle, and has to have 
the capability of being used while driving on the road, in 
traffic. 

The design of the system presented in this study follows 
the design of the monitoring system developed at the 
University of Pittsburgh (Vojtisek-Lom and Cobb, 1997) 
of CNG and gasoline light-duty vehicles. Based on the 
feedback from drivers, passengers and fleet managers, 
the following criteria were identified: 

1. The system must be capable of being installed 
quickly and easily on a wide variety of vehicles 

2. The system should be capable of being used during 
the regular everyday duty of the vehicle, and should 
not excessively interfere with the use of the vehicle 

3. The system must not pose an excessive amount of 
real or perceived danger to the vehicle drivers, 
passengers, or the general public 

4. The system should not require any modifications to 
the tested vehicle 

 
Based on these criteria, choices were made about 
exhaust flow measurement, sample conditioning, source 
of power, and detection methods. 

FLOW MEASUREMENT - In the traditional laboratory 
settings, the exhaust is diluted, and the combined flow of 
exhaust plus dilution air is held constant using a 
constant volume sampler (CVS). During modal (real-
time) measurements, the instantaneous mass emissions 
rates in grams per second are determined by multiplying 
the appropriate concentration data by the CVS flow. Due 
to the size of the CVS, its use would be impractical on 
the road. Therefore, mass emissions need to be 
determined by multiplying the instantaneous 
concentrations by the instantaneous flow. As both tend 

to vary in real-time, extreme care must be taken to 
match the concentration data with the appropriate flow 
data. 

While the exhaust flow can be determined directly using 
a mass exhaust flow meter (Breton, 1998; Gautam et al., 
2001; Weaver, 2001) or other physical device 
(Czachura, 2001) placed in or at the end of the exhaust 
system, this typically requires a straight run of exhaust 
pipe approximately ten times its diameter. This can 
make the field installation of the monitoring system 
difficult (Vojtisek-Lom and Cobb, 1997). For this reason, 
the exhaust flow is measured indirectly, by calculating 
the intake air mass flow and using mass balance 
equations to obtain the exhaust flow. The intake air 
mass flow is obtained from the engine intake mass air 
flow sensor, or from engine design (engine displacement 
and compression ratio) and operating parameters 
(engine rpm, intake manifold pressure, intake air 
temperature) using a speed-density method. This 
process has been described in detail elsewhere 
(Vojtisek-Lom and Cobb, 1998). Two other designs also 
use intake air flow, either vehicle-reported (Butler et al., 
1999) or measured by an independent flow meter 
(Ikonen, 2001). 

On late-model vehicles, the engine operating data is 
obtained from the engine control unit on-board 
diagnostics (OBD) port, which is typically located under 
the dash, in the engine compartment, and on some 
newer buses in the electrical panel in the rear of the bus, 
accessible from the inside. 

On older vehicles, the engine operating data is obtained 
through a set of temporarily mounted sensors. On spark 
ignited engines, the engine rpm are measured by an 
inductive pickup clamped around a spark plug wire. On 
diesel engines, the engine rpm are measured by a 
piezoelectric sensor clamped around a fuel line between 
the injection pump and injector. This sensor, commonly 
used in repair shops (Snap-On Tools),  senses pressure 
pulses corresponding to individual injections. While this 
approach does not work on direct ignition spark engines 
and common rail injection diesels, the operating data on 
these engines is typically obtained from the OBD port. 
As an alternative, engine rpm can also be measured 
from the frequency of the voltage ripple in the vehicle 
electrical system (RPM 8000, #manufacturer#). The 
intake air pressure is obtained by adding a short length 
of tubing (2") with a pressure transducer inline with a 
manifold vacuum hose on throttled engines, and inline 
with a turbo boost pressure line on turbocharged 
engines. On naturally aspirated, non-throttled engines 
barometric pressure is substitued for the manifold 
pressure. The intake air temperature is measured by 
inserting a thermocouple into the intake air stream. On 
naturally aspirated engines, the intake air temperature 
can also be estimated based on measured atmospheric 
air and engine oil temperatures, with engine oil 
temperature being measured by a thermocouple probe 
inserted into the dipstick tube. On turbocharged engines, 
intake air temperature can also be calculated from 



barometric and turbo boost pressures and ambient air 
temperature assuming an adiabatic compression of the 
intake air. On turbocharged engines with an aftercooler, 
pressure and temperature of the intake air can be 
measured either before or after the aftercooler, with both 
measured on the same side. 

SOURCE OF POWER - The power necessary to run the 
portable, on-board system can be obtained either from 
the vehicle electrical system, or from an independent 
source, typically a battery bank or an on-board 
generator. Both approaches have their advantages and 
disadvantages. Drawing power from the vehicle 
electrical system increases the load on the engine, 
possibly changing its emissions characteristics, and 
poses a practical limit on the amount of power available, 
typically 10 A at 12 V for light and 15-20 A at 12 V for 
heavy-duty vehicles. Using an independent source adds 
to the complexity of the system, and placing a running 
generator or a battery bank onto or inside a moving 
vehicle poses safety concerns. In this study, one of the 
design goals was to monitor emissions on buses during 
their regular service, with passengers on board. 
Primarily for this reason, the choice was made to design 
the system to run on 12 V DC, to limit the power 
consumption to 15 A, and to extract the power from the 
vehicle electrical system.  

To facilitate cold start testing, the system has been 
equipped with a battery backup, which allows for the 
system to run on its own power for up to one minute. 
This allows the system to run from an independent 
source (lead-acid battery, another vehicle, or grid power) 
until the engine has started, and then to be plugged into 
the vehicle electrical system. 

SAMPLE CONDITIONING - In traditional laboratory 
settings, diesel exhaust is heated, primarily to avoid the 
condensation of the water and heavier hydrocarbons 
and to prevent the particulate matter and some gases 
from being entrapped or dissolved in the condensate. 
Typically, the exhaust is also diluted. Heated sampling 
systems, heated instruments and exhaust dilution 
systems add to the complexity of an on-board system, 
and often necessitate relatively large amounts of electric 
power to operate. Even though well insulated heated 
sample lines and mini-diluters are being developed, the 
penalty associated with their use was deemed excessive 
for this application. The choice was made to sample raw, 
undiluted exhaust using an unheated 20-foot (6 m) long, 
¼" (6 mm) diameter sample line. The line runs from the 
sample probe attached to the tailpipe using a hose 
clamp, and into the vehicle, typically through a partially 
open window. The sample line is placed in such a way 
that "low spots" where condensate could accumulate are 
avoided. The sample is routed into a condensate 
separation bowl, from the bottom of which the 
condensate is continuously drawn into a sample pump 
and exhausted from the system. The condensate-free 
sample is drawn from the top into gaseous and 
particulate matter analyzers. Both condensate and 
sample are then routed to the outside of the vehicle. 

GASEOUS POLLUTANTS - On-road measurements 
require a small gas analyzer, capable of maintaining a 
reasonably high accuracy under varying conditions 
(temperature, humidity, supply voltage, movements, 
vibrations). Given the time and resource constraints, the 
choice was made to adopt a gas analyzer subsystem 
typically found in repair-grade five-gas analyzers 
commonly used for emissions inspection and 
maintenance programs, and to make minor modifications 
to obtain better stability, detection limit and response 
time. 

The sample is drawn through two wire-mesh filters and 
one coalescing filter to remove most of the condensate, 
which is drawn from the bottom of the filter housing 
through a sampling pump and out of the system. The 
filtered sample is then re-heated using waste heat from 
electrical components and passed through a sample cell 
of a NDIR (non-dispersive infra-red) analyzer, which 
simultaneously measures the concentrations of 
hydrocarbons (measured and reported as hexane), CO 
and CO

2
. The sample is then routed to two 

electrochemical cells, one measuring nitric oxide (NO) 
and the other O

2
. As in most cases over 95% of NO

x
 is 

emitted in the form of NO, NO
x
 concentrations are then 

estimated from those of NO. The hydrocarbon reading is 
not considered accurate on diesel engines because only 
a fraction of diesel exhaust hydrocarbons is believed to 
reach the sample cell in gaseous form. 

PARTICULATE MATTER - Condensed water is 
separated from the sample using a water separation 
bowl. The sample is then heated to prevent further 
condensation, and split into two parallel streams, with 
one stream being drawn at a large angle from the main 
stream of sample flow. Each parallel stream is then 
passed through two laser beams. A layer of filtered air is 
formed around the sample to protect the optics from 
being coated by oily particles. A photo detector mounted 
away from the path of laser beam detects the intensity of 
the light scattered by the particles. The sample is then 
filtered and exhausted by an internal sample pump. 

The instrument has six orders of magnitude range, with 
exhaust from new generation “smokeless” diesels 
typically near the lower end, and concentrated cigar 
smoke being approximately one magnitude below the 
upper end.  

The correlation of the response with particle mass, total 
surface area or count has not been well established at is 
point, and is dependent on the particle size distribution 
and the size of elemental and organic fractions. 
Preliminary comparison tests show relatively good 
correlation of the response with total particle mass 
(gravimetric method, diluted sample collected on filters, 
per 40 CFR 86, and real-time measurements using a 
TEOM-1105 diesel particulate monitor) for a particular 
engine, under a wide range of operating conditions.  



VALIDATION DATA  

To validate the readings produced by the portable, on-
board monitoring system, the system has been installed 
on three full-size diesel pickup trucks, which have been 
tested in the New York State Dept. of Environmental 
Conservation Automotive Emissions Laboratory in 
Albany, NY. A 1999 and a 1998 Dodge Ram 2500 with 
5.9-liter Cummins turbo diesel engine and a 1997 Ford 
F-350 with 7.3-liter Powerstroke turbo diesel engine 
were used. The vehicles were tested on I/M 240, LA-
505, FET (Federal highway fuel efficiency test), New 
York City (NYCC) and Federal test protocol Bag 2 (FTP-
2) driving cycles. Data was simultaneously collected by 
both the laboratory and the portable system. As the sole 
purpose of the tests was to establish a correlation 
between the two sets of results, and a range of emission 
levels was desirable, guidelines for vehicle 
preconditioning and engine starting (prior to vs. at the 
beginning of the cycle) were intentionally not followed. 
Two series of tests were performed in May and July 
2000. 

Figure 1: Comparison of grams per test NO
x
 data 

The exhaust was collected by 4" silicon rubber and 
corrugated steel lines into an unheated dilution tunnel, in 
which a constant flow was maintained by a positive 
displacement blower. Real-time concentrations of HC, 
CO, NO

x
, CO

2
 and PM were measured by a heated FIR 

(flame ionization detector), NDIR (non-dispersive infra-
red), chemilumiscence, NDIR and TEOM-1105 
(Transient element oscillating microbalance, Rupprecht 
& Patashnick Co.), respectively. Total PM emissions 
were also measured by a gravimetric system.  

The portable system (described earlier in this paper) was 
placed in various locations (bed of the truck, test cell, a 
corridor paralleling the test cell) and consisted of two 
separate units: an OEM-2100

TM
 light-duty gasoline 

vehicle emissions monitoring system manufactured by 
Clean Air Technologies was used to determine exhaust 
flow and gaseous pollutant emissions, and a separate 
PM prototype unit was used to measure PM 
concentrations. On all three vehicles, engine operating 
data was obtained through the OBD-II interface.  

In May 2000, all three vehicles were tested, as follows: 

1. 1999 Dodge Ram 2500 - 4 x LA-505, 2 x FET, 1 x 
NYCC, 1 x steady state @ 60 mph 

2. 1998 Dodge Ram 2500 - 1 x LA-505, 1x FET, 1 x 
NYCC; and 

3. 1997 Ford F-350 - 2 x LA-505, 1 x FTP-2, 1 x FET, 1 
x NYCC. 

 
In July 2000, the 1999 Dodge Ram 2500 was tested, 
using the following cycles: 6 x LA-505, 2 x FET, 2 x I/M 
240. 

Figure 2: Comparison of grams per test CO2 data  

During all May and a portion of July tests (FET and 
NYCC), a developmental OEM-2100 unit was used. 
During all July tests, a production OEM-2100 unit (serial 
no. 129) owned by the DEC laboratory was used. 
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During the testing, various problems were experienced 
with both portable and laboratory systems. During the 
sixteen tests in May, portions of OBD data (engine 
operating data) was missing on two tests, turbocharged 
boost data was biased on three tests, and NO

x
 data was 

lost on one test. On the laboratory end, TEOM data was 
lost on two tests and gravimetric PM data on one test, 
and a single gravimetric PM measurement was given for 
one pair of consecutive tests. 

Figure 3: Comparison of transient response of laboratory (top) and 

portable (bottom) system, and the test-to-test repeatability for both 

systems, for NO
x
 on four LA-505 cycles driven with 1999 Dodge Ram 

2500 with 5.9-liter Cummins turbo diesel 

Figure 4: Comparison of transient response of laboratory (top) and 

portable (bottom) system, and the test-to-test repeatability for both 

systems, for NO
x
 on four LA-505 cycles driven with 1999 Dodge Ram 

2500 with 5.9-liter Cummins turbo diesel 
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To qualitatively compare the real-time response 
characteristics, especially the variance between the two 
methods, and the repeatability and consistency of each 
method, second-by-second data for the last four of the 
six July LA-505 tests is shown in Figures 3 (NO

x
) and 4 

(CO
2
). The second-by-second laboratory data for all four 

tests is plotted on the top portion of the graph; the 
portable, on-board system data for all four tests is 
plotted on the bottom. 

The PM data for all May 2000 tests is plotted in Figures 
5 (portable PM vs. real-time PM data collected by 
TEOM-1105) and 6 (portable PM vs. gravimetric), except 
when the data from that instrument was unavailable. 
During the July 2000 tests, the portable PM unit data 
was excessively noisy, and a source of noise was found 
within the data acquisition system at a later time; none of 
the July PM data is therefore included.  

Figure 5: Comparison of prototype portable, on-board light-scattering 

PM monitor with TEOM-1105 measurements 

DISCUSSION  

Under ideal conditions, both exhaust flow and 
concentrations would be measured using compact, in-
situ sensors similar to today's exhaust gas oxygen 
sensors. Unfortunately, the technology development has 
not progressed to that point. Design of practical portable, 
on-board emissions monitoring systems therefore 
involves a number of competing goals - namely size, 
portability, versatility, accuracy and cost - among which 
compromises need to be made after careful 
consideration of the intended application of the  
particular system. 

In this case, the intended application - to monitor 
emissions on various in-use fleets - called for a system 
which does not require any modifications to the tested 
vehicle and is safe to use on vehicles carrying 
passengers. This effectively excluded the use of a 
battery bank, a heated sampling and analytical system, a 
flame ionization detector, or any particulate monitoring 
technology requiring high vacuum to operate. As a 
result, the measurement of compounds which are 
soluble in water (NO

2
, formaldehyde), compounds which 

condense at ambient temperatures (heavy 
hydrocarbons), and the measurement of nanoparticles is 
nearly impossible using this approach, with measured 
values being qualitative at best.  

Figure 6: Comparison of prototype portable, on-board light-scattering 

PM monitor with gravimetric PM measurements 

These requirements also effectively excluded the use of 
an exhaust mass flow meter. The advantage of 
measuring the flow near the exhaust sampling point is 
the ability to accurately match the flow and 
concentrations data. The downside of mass flow meters 
is that they require a laminar (turbulence-free) flow, and 
must be installed in a straight run of exhaust pipe with 
the length of or above ten times its diameter. Typically, 
the diameter is equal to or greater than the exhaust 
stack diameter. In heavy-duty vehicle applications, the 
use of exhaust flow meter therefore typically 
necessitates extending the stack by 40" or more, or 
replacing a section of the stack with the flow 
measurement system. While this approach does not 
pose large difficulties on some vehicles such as Class 8 
over the road trucks, it can be installed only with great 
difficulties on other vehicles such as box trucks or buses. 
On these vehicles, there is not a readily accessible 
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straight section of the exhaust, and the tailpipe is pointed 
to the ground, to the side, or upward. In many cases, a 
vehicle with the tailpipe extended could not be driven in 
traffic. 

The benefits of this approach need to be considered in 
light of other sources of errors associated with emissions 
monitoring, notably vehicle-to-vehicle differences, and 
the emissions variability within the vehicle itself. In other 
words, one needs to consider the total of (1) the 
difference between what is measured and what is 
actually emitted during a test; (2) the difference between 
what is emitted during the test and what the vehicle 
emits during its everyday duties; and (3) the difference 
between the emissions characteristics of the tested 
vehicle and the overall emissions levels of the entire 
fleet. For example, when evaluating a benefit of cleaner 
fuels on a fleet of city buses, one needs to compare 
taking a bus out of service, installing a laboratory-grade 
monitoring system, loading it with sandbags and driving 
it on a simulated route (an approach described by 
Ikonen, 2001) against testing several buses on their 
regular routes, with passengers on board, using a 
simpler (and possibly less accurate) monitoring system.  

The question of how accurate a monitoring system 
needs to be therefore cannot be objectively answered, 
neither can a monitoring system be easily designed, 
without first considering the intended application of the 
system and the errors associated with different 
approaches. 

Within this context, the validation data will now  be 
discussed. The NO

x
 and CO

2
 data is presented as 

measured, and included several runs with data missing 
from a short portions of the test, several runs with an 
error up to 25% in real-time exhaust flow calculations 
due to error in reading the turbo boost pressure, and an 
unknown number of tests with misaligned flow and 
concentration data. Post-processing of the comparison 
data suggests that with careful preparations and quality 
control, a better correlation between laboratory and 
portable system results can be achieved.  

The slope of the linear regression line on the scatter 
graphs showing the laboratory to portable system 
comparison for NO

x
 and CO

2
 (Figures 1 and 2, 

respectively) is different from unity (1.0). This is due to 
both known and unknown factors. For example, it was 
discovered that the portable systems were calibrated 
using calibration gases designed for inspection and 
maintenance programs with observed differences 
between actual and advertised concentrations of up to 
5%. But as long as the slope of the regression line is 
constant for different vehicles and also among the 
physical monitoring systems, this difference can 
corrected. 

The qualitative evaluation of the real-time response 
characteristics shown in Figures 3 and 4 for NO

x
 and 

CO
2
, respectively, do not reveal any apparent difference 

between the response time and the repeatability of the 

portable system and the laboratory. While the concerns 
about using an electrochemical cell for NO measurement 
due to its inferior response time and poor reliability 
cannot be disregarded, the data seems to support the 
validity of the use of electrochemical cells.  

The particulate matter concentrations measured by the 
portable system are in arbitrary units, as they represent 
the intensity of the light scattered by the particles. The 
response of a light scattering detector is strongly 
dependent on particle size distribution, which is not well 
known. It can be speculated that most particles larger 
than one micron are excluded by sampling at 90-degree 
angle from the flow, that most aerosol particles "drop 
out" or condense onto larger particles, and that some 
particles are lost within the sampling system. This was 
the first comparison test of any kind for this device in a 
diesel exhaust monitoring application, therefore no factor 
correlating the response to the particulate mass has 
been established.  

The comparison plots on Figures 5 and 6 show that 
there is a positive correlation between the portable 
system measurements and the laboratory 
measurements. According to Moosmüller et al. (2000), 
light scattering detector readings tend to correlate well 
with PM mass, although with a different slope (ratio 
between the reading and the PM mass) for each 
individual vehicle. The data on Figure 5 show a good 
correlation between light-scattering and the TEOM for 
the 1999 Dodge Ram, but not when comparing the light 
scattering results with the gravimetric measurements 
shown on Figure 6. The slope of the linear regression 
appears to be different for each vehicle - notably judging 
from the TEOM data - although the vehicle-to-vehicle 
differences could also be attributed to random variances. 
Also, a significant amount of noise was recently found in 
the data acquisition system and reduced by shielding 
and grounding all cables, by increasing the sampling 
rate, and by averaging the readings over a period of time 
before reporting a value.  

The qualitative comparison of second-by-second data 
reveals that the light-scattering detector has a much 
faster response time than TEOM, and that the side-by-
side comparison of the data requires using a 12-second 
rolling average for the portable system. The extent to 
which the 12-second rolling average of the portable 
system data follows the TEOM readings varies with each 
test. The signal noise within the portable system and the 
drift within the TEOM due to the accumulation and de-
accumulation of water on the filter during the test were 
identified as two sources of discrepancies between the 
readings. 

The selection of the vehicles for the comparison test also 
needs to be discussed. While full-size pickup trucks can 
be tested on a light-duty chassis dynamometer, nearly 
identical engines are used in school buses and smaller 
straight trucks, and the largest diesels used on the road 
are only two to three times the size and power of the 
engines tested here. Therefore, it is likely that the test 



results will have a  similar validity for vehicles ranging 
from compact pickups to Class 8 trucks.  

The type of engine needs to be also considered when 
validating any PM instruments, as there is a significant 
difference in PM composition between older, 
mechanically controlled and late-model, electronically 
controlled engines. All engines used in this test were of 
the latter type; therefore, additional tests would need to 
be performed on mechanically controlled engines to 
provide a better understanding of the characteristics of 
the portable system PM readings. The engine type is not 
believed to have a major impact on the NO

x
 and CO

2
 

measurements. 

It follows that another, perhaps more extensive, set of 
comparison tests needs to be run, with close attention to 
the quality control (i.e., eliminating excessive signal 
noise and operator error and using a high-quality 
calibration gas), in order to determine the accuracy of 
the PM measurements, and the feasibility of this method 
in future systems. 

CONCLUSION 

A portable, on-board mass exhaust emissions 
monitoring system has been developed to measure NO

x
, 

CO
2
 and PM emissions on diesel vehicles. This system 

easily installs on a large variety of vehicles and allows 
for testing to be done during regular vehicle duties. The 
system does not require any modifications to the tested 
vehicle and can be safely used on buses with 
passengers on board. This is done at some sacrifice to 
the accuracy and to the variety of pollutants that can be 
measured. Comparison of the portable system and 
traditional laboratory results for three full-size diesel 
pickups shows a strong correlation between both real-
time and total NO

x
 and CO

2
 emissions. Additional 

validation data will need to be collected in order to 
characterize the PM measurements. 
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